» Articles » PMID: 37355635

A Family of Oxychloride Amorphous Solid Electrolytes for Long-cycling All-solid-state Lithium Batteries

Abstract

Solid electrolyte is vital to ensure all-solid-state batteries with improved safety, long cyclability, and feasibility at different temperatures. Herein, we report a new family of amorphous solid electrolytes, xLiO-MCl (M = Ta or Hf, 0.8 ≤ x ≤ 2, y = 5 or 4). xLiO-MCl amorphous solid electrolytes can achieve desirable ionic conductivities up to 6.6 × 10S cm at 25 °C, which is one of the highest values among all the reported amorphous solid electrolytes and comparable to those of the popular crystalline ones. The mixed-anion structural models of xLiO-MCl amorphous SEs are well established and correlated to the ionic conductivities. It is found that the oxygen-jointed anion networks with abundant terminal chlorines in xLiO-MCl amorphous solid electrolytes play an important role for the fast Li-ion conduction. More importantly, all-solid-state batteries using the amorphous solid electrolytes show excellent electrochemical performance at both 25 °C and -10 °C. Long cycle life (more than 2400 times of charging and discharging) can be achieved for all-solid-state batteries using the xLiO-TaCl amorphous solid electrolyte at 400 mA g, demonstrating vast application prospects of the oxychloride amorphous solid electrolytes.

Citing Articles

Characterizing Electrode Materials and Interfaces in Solid-State Batteries.

Alsac E, Nelson D, Yoon S, Cavallaro K, Wang C, Sandoval S Chem Rev. 2025; 125(4):2009-2119.

PMID: 39903474 PMC: 11869192. DOI: 10.1021/acs.chemrev.4c00584.


LiZrF protective layer enabled high-voltage LiCoO positive electrode in sulfide all-solid-state batteries.

Zhou X, Chang C, Yu D, Zhang K, Li Z, Jiang S Nat Commun. 2025; 16(1):112.

PMID: 39747862 PMC: 11696131. DOI: 10.1038/s41467-024-55695-9.


All-solid-state batteries designed for operation under extreme cold conditions.

Hong B, Gao L, Li C, Lai G, Zhu J, Huang D Nat Commun. 2025; 16(1):143.

PMID: 39747842 PMC: 11696891. DOI: 10.1038/s41467-024-55154-5.


Research Progress on Solid-State Electrolytes in Solid-State Lithium Batteries: Classification, Ionic Conductive Mechanism, Interfacial Challenges.

Ai S, Wu X, Wang J, Li X, Hao X, Meng Y Nanomaterials (Basel). 2024; 14(22).

PMID: 39591015 PMC: 11597872. DOI: 10.3390/nano14221773.


A family of dual-anion-based sodium superionic conductors for all-solid-state sodium-ion batteries.

Lin X, Zhang S, Yang M, Xiao B, Zhao Y, Luo J Nat Mater. 2024; 24(1):83-91.

PMID: 39354087 PMC: 11685097. DOI: 10.1038/s41563-024-02011-x.


References
1.
Hanghofer I, Brinek M, Eisbacher S, Bitschnau B, Volck M, Hennige V . Substitutional disorder: structure and ion dynamics of the argyrodites LiPSCl, LiPSBr and LiPSI. Phys Chem Chem Phys. 2019; 21(16):8489-8507. DOI: 10.1039/c9cp00664h. View

2.
Jun K, Sun Y, Xiao Y, Zeng Y, Kim R, Kim H . Lithium superionic conductors with corner-sharing frameworks. Nat Mater. 2022; 21(8):924-931. DOI: 10.1038/s41563-022-01222-4. View

3.
Yu C, Ganapathy S, de Klerk N, Roslon I, van Eck E, Kentgens A . Unravelling Li-Ion Transport from Picoseconds to Seconds: Bulk versus Interfaces in an Argyrodite Li6PS5Cl-Li2S All-Solid-State Li-Ion Battery. J Am Chem Soc. 2016; 138(35):11192-201. DOI: 10.1021/jacs.6b05066. View

4.
Li X, Liang J, Chen N, Luo J, Adair K, Wang C . Water-Mediated Synthesis of a Superionic Halide Solid Electrolyte. Angew Chem Int Ed Engl. 2019; 58(46):16427-16432. DOI: 10.1002/anie.201909805. View

5.
Yu C, Ganapathy S, Hageman J, van Eijck L, van Eck E, Zhang L . Facile Synthesis toward the Optimal Structure-Conductivity Characteristics of the Argyrodite LiPSCl Solid-State Electrolyte. ACS Appl Mater Interfaces. 2018; 10(39):33296-33306. PMC: 6172600. DOI: 10.1021/acsami.8b07476. View