» Articles » PMID: 37429864

Realizing Long-cycling All-solid-state Li-In||TiS Batteries Using LiMAsSI (M=Si, Sn) Sulfide Solid Electrolytes

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Jul 10
PMID 37429864
Authors
Affiliations
Soon will be listed here.
Abstract

Inorganic sulfide solid-state electrolytes, especially LiPSX (X = Cl, Br, I), are considered viable materials for developing all-solid-state batteries because of their high ionic conductivity and low cost. However, this class of solid-state electrolytes suffers from structural and chemical instability in humid air environments and a lack of compatibility with layered oxide positive electrode active materials. To circumvent these issues, here, we propose LiMAsSI (M=Si, Sn) as sulfide solid electrolytes. When the LiSiAsSI (x = 0.8) is tested in combination with a Li-In negative electrode and TiS-based positive electrode at 30 °C and 30 MPa, the Li-ion lab-scale Swagelok cells demonstrate long cycle life of almost 62500 cycles at 2.44 mA cm, decent power performance (up to 24.45 mA cm) and areal capacity of 9.26 mAh cm at 0.53 mA cm.

Citing Articles

Research Progress on Solid-State Electrolytes in Solid-State Lithium Batteries: Classification, Ionic Conductive Mechanism, Interfacial Challenges.

Ai S, Wu X, Wang J, Li X, Hao X, Meng Y Nanomaterials (Basel). 2024; 14(22).

PMID: 39591015 PMC: 11597872. DOI: 10.3390/nano14221773.


Preferred crystal plane electrodeposition of aluminum anode with high lattice-matching for long-life aluminum batteries.

Wang S, Guo Y, Du X, Xiong L, Liang Z, Ma M Nat Commun. 2024; 15(1):6476.

PMID: 39085239 PMC: 11291883. DOI: 10.1038/s41467-024-50723-0.


Designing Reliable Cathode System for High-Performance Inorganic Solid-State Pouch Cells.

Wang S, Liu S, Chen W, Hu Y, Chen D, He M Adv Sci (Weinh). 2024; 11(23):e2401889.

PMID: 38554399 PMC: 11187921. DOI: 10.1002/advs.202401889.


A solid-state lithium-ion battery with micron-sized silicon anode operating free from external pressure.

Pan H, Wang L, Shi Y, Sheng C, Yang S, He P Nat Commun. 2024; 15(1):2263.

PMID: 38480726 PMC: 10937906. DOI: 10.1038/s41467-024-46472-9.

References
1.
Chen R, Li Q, Yu X, Chen L, Li H . Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. Chem Rev. 2019; 120(14):6820-6877. DOI: 10.1021/acs.chemrev.9b00268. View

2.
Wu J, Liu S, Han F, Yao X, Wang C . Lithium/Sulfide All-Solid-State Batteries using Sulfide Electrolytes. Adv Mater. 2020; 33(6):e2000751. DOI: 10.1002/adma.202000751. View

3.
Fitzhugh W, Wu F, Ye L, Su H, Li X . Strain-Stabilized Ceramic-Sulfide Electrolytes. Small. 2019; 15(33):e1901470. DOI: 10.1002/smll.201901470. View

4.
Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M . A lithium superionic conductor. Nat Mater. 2011; 10(9):682-6. DOI: 10.1038/nmat3066. View

5.
Jung W, Kim J, Choi S, Kim S, Jeon M, Jung H . Superionic Halogen-Rich Li-Argyrodites Using In Situ Nanocrystal Nucleation and Rapid Crystal Growth. Nano Lett. 2020; 20(4):2303-2309. DOI: 10.1021/acs.nanolett.9b04597. View