» Articles » PMID: 30129167

Hgvs: A Python Package for Manipulating Sequence Variants Using HGVS Nomenclature: 2018 Update

Overview
Journal Hum Mutat
Specialty Genetics
Date 2018 Aug 22
PMID 30129167
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

The Human Genome Variation Society (HGVS) nomenclature guidelines encourage the accurate and standard description of DNA, RNA, and protein sequence variants in public variant databases and the scientific literature. Inconsistent application of the HGVS guidelines can lead to misinterpretation of variants in clinical settings. Reliable software tools are essential to ensure consistent application of the HGVS guidelines when reporting and interpreting variants. We present the hgvs Python package, a comprehensive tool for manipulating sequence variants according to the HGVS nomenclature guidelines. Distinguishing features of the hgvs package include: (1) parsing, formatting, validating, and normalizing variants on genome, transcript, and protein sequences; (2) projecting variants between aligned sequences, including those with gapped alignments; (3) flexible installation using remote or local data (fully local installations eliminate network dependencies); (4) extensive automated tests; and (5) open source development by a community from eight organizations worldwide. This report summarizes recent and significant updates to the hgvs package since its original release in 2014, and presents results of extensive validation using clinical relevant variants from ClinVar and HGMD.

Citing Articles

MaveDB 2024: a curated community database with over seven million variant effects from multiplexed functional assays.

Rubin A, Stone J, Bianchi A, Capodanno B, Da E, Dias M Genome Biol. 2025; 26(1):13.

PMID: 39838450 PMC: 11753097. DOI: 10.1186/s13059-025-03476-y.


Standardizing variant naming in literature with VariantValidator to increase diagnostic rates.

Freeman P, Wagstaff J, Fokkema I, Cutting G, Rehm H, Davies A Nat Genet. 2024; 56(11):2284-2286.

PMID: 39358598 DOI: 10.1038/s41588-024-01938-w.


Comprehensive and accurate genome analysis at scale using DRAGEN accelerated algorithms.

Behera S, Catreux S, Rossi M, Truong S, Huang Z, Ruehle M bioRxiv. 2024; .

PMID: 38260545 PMC: 10802302. DOI: 10.1101/2024.01.02.573821.


Clinical significance of genetic variation in hypertrophic cardiomyopathy: comparison of computational tools to prioritize missense variants.

Barbosa P, Ribeiro M, Carmo-Fonseca M, Fonseca A Front Cardiovasc Med. 2022; 9:975478.

PMID: 36061567 PMC: 9433717. DOI: 10.3389/fcvm.2022.975478.


Estimation of hereditary fructose intolerance prevalence in the Chinese population.

Tang M, Chen X, Ni Q, Lu Y, Wu B, Wang H Orphanet J Rare Dis. 2022; 17(1):326.

PMID: 36028839 PMC: 9419342. DOI: 10.1186/s13023-022-02487-3.


References
1.
Fokkema I, Taschner P, Schaafsma G, Celli J, Laros J, den Dunnen J . LOVD v.2.0: the next generation in gene variant databases. Hum Mutat. 2011; 32(5):557-63. DOI: 10.1002/humu.21438. View

2.
den Dunnen J, Dalgleish R, Maglott D, Hart R, Greenblatt M, McGowan-Jordan J . HGVS Recommendations for the Description of Sequence Variants: 2016 Update. Hum Mutat. 2016; 37(6):564-9. DOI: 10.1002/humu.22981. View

3.
Antonarakis S . Recommendations for a nomenclature system for human gene mutations. Nomenclature Working Group. Hum Mutat. 1998; 11(1):1-3. DOI: 10.1002/(SICI)1098-1004(1998)11:1<1::AID-HUMU1>3.0.CO;2-O. View

4.
Yen J, Garcia S, Montana A, Harris J, Chervitz S, Morra M . A variant by any name: quantifying annotation discordance across tools and clinical databases. Genome Med. 2017; 9(1):7. PMC: 5267466. DOI: 10.1186/s13073-016-0396-7. View

5.
Wang K, Li M, Hakonarson H . ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010; 38(16):e164. PMC: 2938201. DOI: 10.1093/nar/gkq603. View