» Articles » PMID: 29165669

ClinVar: Improving Access to Variant Interpretations and Supporting Evidence

Abstract

ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) is a freely available, public archive of human genetic variants and interpretations of their significance to disease, maintained at the National Institutes of Health. Interpretations of the clinical significance of variants are submitted by clinical testing laboratories, research laboratories, expert panels and other groups. ClinVar aggregates data by variant-disease pairs, and by variant (or set of variants). Data aggregated by variant are accessible on the website, in an improved set of variant call format files and as a new comprehensive XML report. ClinVar recently started accepting submissions that are focused primarily on providing phenotypic information for individuals who have had genetic testing. Submissions may come from clinical providers providing their own interpretation of the variant ('provider interpretation') or from groups such as patient registries that primarily provide phenotypic information from patients ('phenotyping only'). ClinVar continues to make improvements to its search and retrieval functions. Several new fields are now indexed for more precise searching, and filters allow the user to narrow down a large set of search results.

Citing Articles

A clinical knowledge graph-based framework to prioritize candidate genes for facilitating diagnosis of Mendelian diseases and rare genetic conditions.

Gnanaolivu R, Oliver G, Jenkinson G, Blake E, Chen W, Chia N BMC Bioinformatics. 2025; 26(1):82.

PMID: 40087567 DOI: 10.1186/s12859-025-06096-2.


Monogenic Common Variable Immunodeficiency (Mo-CVID) Score for Optimizing the Genetic Diagnosis in Pediatric CVID Cohort.

Barbati F, Lodi L, Boscia S, Cortimiglia M, Calistri E, Quaranta F Eur J Immunol. 2025; 55(3):e202451433.

PMID: 40079712 PMC: 11905875. DOI: 10.1002/eji.202451433.


Machine Learning Methods for Classifying Multiple Sclerosis and Alzheimer's Disease Using Genomic Data.

Arnal Segura M, Bini G, Krithara A, Paliouras G, Tartaglia G Int J Mol Sci. 2025; 26(5).

PMID: 40076709 PMC: 11900513. DOI: 10.3390/ijms26052085.


PON-P3: Accurate Prediction of Pathogenicity of Amino Acid Substitutions.

Kabir M, Ahmed S, Zhang H, Rodriguez-Rodriguez I, Najibi S, Vihinen M Int J Mol Sci. 2025; 26(5).

PMID: 40076632 PMC: 11899954. DOI: 10.3390/ijms26052004.


Somatic mutations in Brazilian patients with paroxysmal nocturnal hemoglobinuria: a comprehensive analysis.

Eiko Yamakawa P, Perez Gomes C, Ribeiro Mendes A, Cesar Justino de Oliveira C, Porto Freitas F, Bettoni F Front Med (Lausanne). 2025; 12:1472186.

PMID: 40066167 PMC: 11891177. DOI: 10.3389/fmed.2025.1472186.


References
1.
Auton A, Brooks L, Durbin R, Garrison E, Kang H, Korbel J . A global reference for human genetic variation. Nature. 2015; 526(7571):68-74. PMC: 4750478. DOI: 10.1038/nature15393. View

2.
Landrum M, Lee J, Riley G, Jang W, Rubinstein W, Church D . ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2013; 42(Database issue):D980-5. PMC: 3965032. DOI: 10.1093/nar/gkt1113. View

3.
Mungall C, Batchelor C, Eilbeck K . Evolution of the Sequence Ontology terms and relationships. J Biomed Inform. 2010; 44(1):87-93. PMC: 3052763. DOI: 10.1016/j.jbi.2010.03.002. View

4.
Kohler S, Vasilevsky N, Engelstad M, Foster E, McMurry J, Ayme S . The Human Phenotype Ontology in 2017. Nucleic Acids Res. 2016; 45(D1):D865-D876. PMC: 5210535. DOI: 10.1093/nar/gkw1039. View

5.
Yates B, Braschi B, Gray K, Seal R, Tweedie S, Bruford E . Genenames.org: the HGNC and VGNC resources in 2017. Nucleic Acids Res. 2016; 45(D1):D619-D625. PMC: 5210531. DOI: 10.1093/nar/gkw1033. View