» Articles » PMID: 30097675

Keep Moving and Stay in a Good Shape to Find Your Homologous Recombination Partner

Overview
Journal Curr Genet
Specialty Genetics
Date 2018 Aug 12
PMID 30097675
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

Genomic DNA is constantly exposed to damage. Among the lesion in DNA, double-strand breaks (DSB), because they disrupt the two strands of the DNA double helix, are the more dangerous. DSB are repaired through two evolutionary conserved mechanisms: Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR). Whereas NHEJ simply reseals the double helix with no or minimal processing, HR necessitates the formation of a 3'ssDNA through the processing of DSB ends by the resection machinery and relies on the recognition and pairing of this 3'ssDNA tails with an intact homologous sequence. Despite years of active research on HR, the manner by which the two homologous sequences find each other in the crowded nucleus, and how this modulates HR efficiency, only recently emerges. Here, we review recent advances in our understanding of the factors limiting the search of a homologous sequence during HR.

Citing Articles

Cohesin complex oligomerization maintains end-tethering at DNA double-strand breaks.

Phipps J, Toulouze M, Ducrot C, Costa R, Brocas C, Dubrana K Nat Cell Biol. 2024; 27(1):118-129.

PMID: 39482358 PMC: 11735392. DOI: 10.1038/s41556-024-01552-2.


Double-strand breaks in facultative heterochromatin require specific movements and chromatin changes for efficient repair.

Wensveen M, Dixit A, van Schendel R, Kendek A, Lambooij J, Tijsterman M Nat Commun. 2024; 15(1):8984.

PMID: 39419979 PMC: 11487122. DOI: 10.1038/s41467-024-53313-2.


Chromosome compartmentalization: causes, changes, consequences, and conundrums.

Li H, Playter C, Das P, McCord R Trends Cell Biol. 2024; 34(9):707-727.

PMID: 38395734 PMC: 11339242. DOI: 10.1016/j.tcb.2024.01.009.


All who wander are not lost: the search for homology during homologous recombination.

Hu J, Crickard J Biochem Soc Trans. 2024; 52(1):367-377.

PMID: 38323621 PMC: 10903458. DOI: 10.1042/BST20230705.


Liquid-liquid phase separation in DNA double-strand breaks repair.

Wang Y, Zhao W, Shi J, Wan X, Zheng J, Fan X Cell Death Dis. 2023; 14(11):746.

PMID: 37968256 PMC: 10651886. DOI: 10.1038/s41419-023-06267-0.


References
1.
Charpentier M, Khedher A, Menoret S, Brion A, Lamribet K, Dardillac E . CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair. Nat Commun. 2018; 9(1):1133. PMC: 5859065. DOI: 10.1038/s41467-018-03475-7. View

2.
Ferrari M, Dibitetto D, De Gregorio G, Eapen V, Rawal C, Lazzaro F . Functional interplay between the 53BP1-ortholog Rad9 and the Mre11 complex regulates resection, end-tethering and repair of a double-strand break. PLoS Genet. 2015; 11(1):e1004928. PMC: 4287487. DOI: 10.1371/journal.pgen.1004928. View

3.
Kruhlak M, Celeste A, Dellaire G, Fernandez-Capetillo O, Muller W, McNally J . Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J Cell Biol. 2006; 172(6):823-34. PMC: 2063727. DOI: 10.1083/jcb.200510015. View

4.
Costelloe T, Louge R, Tomimatsu N, Mukherjee B, Martini E, Khadaroo B . The yeast Fun30 and human SMARCAD1 chromatin remodellers promote DNA end resection. Nature. 2012; 489(7417):581-4. PMC: 3493121. DOI: 10.1038/nature11353. View

5.
Ochs F, Somyajit K, Altmeyer M, Rask M, Lukas J, Lukas C . 53BP1 fosters fidelity of homology-directed DNA repair. Nat Struct Mol Biol. 2016; 23(8):714-21. DOI: 10.1038/nsmb.3251. View