» Articles » PMID: 29968316

Mitochondrial Function in the Heart: the Insight into Mechanisms and Therapeutic Potentials

Overview
Journal Br J Pharmacol
Publisher Wiley
Specialty Pharmacology
Date 2018 Jul 4
PMID 29968316
Citations 42
Authors
Affiliations
Soon will be listed here.
Abstract

Mitochondrial dysfunction is considered as a crucial contributory factor in cardiac pathology. This has highlighted the therapeutic potential of targeting mitochondria to prevent or treat cardiac disease. Mitochondrial dysfunction is associated with aberrant electron transport chain activity, reduced ATP production, an abnormal shift in metabolic substrates, ROS overproduction and impaired mitochondrial dynamics. This review will cover the mitochondrial functions and how they are altered in various disease conditions. Furthermore, the mechanisms that lead to mitochondrial defects and the protective mechanisms that prevent mitochondrial damage will be discussed. Finally, potential mitochondrial targets for novel therapeutic intervention will be explored. We will highlight the development of small molecules that target mitochondria from different perspectives and their current progress in clinical trials. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.

Citing Articles

Exploring transcriptomic signatures in sudden unexplained death (SUD) cases.

Neubauer J, Dorum G, Haas C Int J Legal Med. 2025; .

PMID: 39982482 DOI: 10.1007/s00414-025-03414-4.


Cardioprotective Effects of Adiponectin-Stimulated Autophagy.

Tam E, Ouimet M, Sweeney G J Lipid Atheroscler. 2025; 14(1):40-53.

PMID: 39911962 PMC: 11791421. DOI: 10.12997/jla.2025.14.1.40.


Mercury-Mediated Cardiovascular Toxicity: Mechanisms and Remedies.

Amin A, Saadatakhtar M, Mohajerian A, Marashi S, Zamanifard S, Keshavarzian A Cardiovasc Toxicol. 2025; 25(3):507-522.

PMID: 39904862 DOI: 10.1007/s12012-025-09966-6.


Restoration of Sestrin 3 Expression Mitigates Cardiac Oxidative Damage in Ischemia-Reperfusion Injury Model.

Park M, Cho S, Jeong D Antioxidants (Basel). 2025; 14(1.

PMID: 39857395 PMC: 11763094. DOI: 10.3390/antiox14010061.


Analyses of mitochondrial metabolism in diseases: a review on C magnetic resonance tracers.

Sharma G, Duarte S, Shen Q, Khemtong C RSC Adv. 2024; 14(51):37871-37885.

PMID: 39606283 PMC: 11600307. DOI: 10.1039/d4ra03605k.


References
1.
Bhujabal Z, Birgisdottir A, Sjottem E, Brenne H, Overvatn A, Habisov S . FKBP8 recruits LC3A to mediate Parkin-independent mitophagy. EMBO Rep. 2017; 18(6):947-961. PMC: 5452039. DOI: 10.15252/embr.201643147. View

2.
Alexander S, Cidlowski J, Kelly E, Marrion N, Peters J, Faccenda E . THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Nuclear hormone receptors. Br J Pharmacol. 2017; 174 Suppl 1:S208-S224. PMC: 5650662. DOI: 10.1111/bph.13880. View

3.
Dai D, Hsieh E, Chen T, Menendez L, Basisty N, Tsai L . Global proteomics and pathway analysis of pressure-overload-induced heart failure and its attenuation by mitochondrial-targeted peptides. Circ Heart Fail. 2013; 6(5):1067-76. PMC: 3856238. DOI: 10.1161/CIRCHEARTFAILURE.113.000406. View

4.
Chen H, Chomyn A, Chan D . Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem. 2005; 280(28):26185-92. DOI: 10.1074/jbc.M503062200. View

5.
Sharov V, Todor A, Khanal S, Imai M, Sabbah H . Cyclosporine A attenuates mitochondrial permeability transition and improves mitochondrial respiratory function in cardiomyocytes isolated from dogs with heart failure. J Mol Cell Cardiol. 2006; 42(1):150-8. PMC: 2700715. DOI: 10.1016/j.yjmcc.2006.09.013. View