6.
Paoletti F, Aldinucci D, Mocali A, Caparrini A
. A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Anal Biochem. 1986; 154(2):536-41.
DOI: 10.1016/0003-2697(86)90026-6.
View
7.
Craciun A, Mititelu-Tartau L, Gavril G, Marin L
. Chitosan crosslinking with pyridoxal 5-phosphate vitamer toward biocompatible hydrogels for in vivo applications. Int J Biol Macromol. 2021; 193(Pt B):1734-1743.
DOI: 10.1016/j.ijbiomac.2021.10.228.
View
8.
Ke C, Sun L, Qiao D, Wang D, Zeng X
. Antioxidant acitivity of low molecular weight hyaluronic acid. Food Chem Toxicol. 2011; 49(10):2670-5.
DOI: 10.1016/j.fct.2011.07.020.
View
9.
Nguyen B, Ruiz-Velasco A, Bui T, Collins L, Wang X, Liu W
. Mitochondrial function in the heart: the insight into mechanisms and therapeutic potentials. Br J Pharmacol. 2018; 176(22):4302-4318.
PMC: 6887906.
DOI: 10.1111/bph.14431.
View
10.
Cheong B, Wilson J, Preventza O, Muthupillai R
. Gadolinium-Based Contrast Agents: Updates and Answers to Typical Questions Regarding Gadolinium Use. Tex Heart Inst J. 2022; 49(3).
PMC: 9242635.
DOI: 10.14503/THIJ-21-7680.
View
11.
Idee J, Fretellier N, Robic C, Corot C
. The role of gadolinium chelates in the mechanism of nephrogenic systemic fibrosis: A critical update. Crit Rev Toxicol. 2014; 44(10):895-913.
DOI: 10.3109/10408444.2014.955568.
View
12.
Panda S, Behera S, Alam M, Syed G
. Endoplasmic reticulum & mitochondrial calcium homeostasis: The interplay with viruses. Mitochondrion. 2021; 58:227-242.
PMC: 7612732.
DOI: 10.1016/j.mito.2021.03.008.
View
13.
Spencer A, Wilson S, Batchelor J, Reid A, Rees J, HARPUR E
. Gadolinium chloride toxicity in the rat. Toxicol Pathol. 1997; 25(3):245-55.
DOI: 10.1177/019262339702500301.
View
14.
Rigaux G, Gheran C, Callewaert M, Cadiou C, Voicu S, Dinischiotu A
. Characterization of Gd loaded chitosan-TPP nanohydrogels by a multi-technique approach combining dynamic light scattering (DLS), asymetrical flow-field-flow-fractionation (AF4) and atomic force microscopy (AFM) and design of positive contrast agents.... Nanotechnology. 2016; 28(5):055705.
DOI: 10.1088/1361-6528/aa5188.
View
15.
Dai Y, Wu C, Wang S, Li Q, Zhang M, Li J
. Comparative study on in vivo behavior of PEGylated gadolinium oxide nanoparticles and Magnevist as MRI contrast agent. Nanomedicine. 2017; 14(2):547-555.
DOI: 10.1016/j.nano.2017.12.005.
View
16.
Carniato F, Tei L, Botta M, Ravera E, Fragai M, Parigi G
. H NMR Relaxometric Study of Chitosan-Based Nanogels Containing Mono- and Bis-Hydrated Gd(III) Chelates: Clues for MRI Probes of Improved Sensitivity. ACS Appl Bio Mater. 2022; 3(12):9065-9072.
DOI: 10.1021/acsabm.0c01295.
View
17.
Ashokan A, Gowd G, Somasundaram V, Bhupathi A, Peethambaran R, Unni A
. Multifunctional calcium phosphate nano-contrast agent for combined nuclear, magnetic and near-infrared in vivo imaging. Biomaterials. 2013; 34(29):7143-57.
DOI: 10.1016/j.biomaterials.2013.05.077.
View
18.
Gheran C, Voicu S, Galateanu B, Callewaert M, Moreau J, Cadiou C
. In Vitro Studies Regarding the Safety of Chitosan and Hyaluronic Acid-Based Nanohydrogels Containing Contrast Agents for Magnetic Resonance Imaging. Int J Mol Sci. 2022; 23(6).
PMC: 8955704.
DOI: 10.3390/ijms23063258.
View
19.
Le Fur M, Caravan P
. The biological fate of gadolinium-based MRI contrast agents: a call to action for bioinorganic chemists. Metallomics. 2018; 11(2):240-254.
PMC: 6486840.
DOI: 10.1039/c8mt00302e.
View
20.
Karfeld-Sulzer L, Waters E, Davis N, Meade T, Barron A
. Multivalent protein polymer MRI contrast agents: controlling relaxivity via modulation of amino acid sequence. Biomacromolecules. 2010; 11(6):1429-36.
PMC: 2892858.
DOI: 10.1021/bm901378a.
View