» Articles » PMID: 29941873

SAVER: Gene Expression Recovery for Single-cell RNA Sequencing

Overview
Journal Nat Methods
Date 2018 Jun 27
PMID 29941873
Citations 305
Authors
Affiliations
Soon will be listed here.
Abstract

In single-cell RNA sequencing (scRNA-seq) studies, only a small fraction of the transcripts present in each cell are sequenced. This leads to unreliable quantification of genes with low or moderate expression, which hinders downstream analysis. To address this challenge, we developed SAVER (single-cell analysis via expression recovery), an expression recovery method for unique molecule index (UMI)-based scRNA-seq data that borrows information across genes and cells to provide accurate expression estimates for all genes.

Citing Articles

MuCST: restoring and integrating heterogeneous morphology images and spatial transcriptomics data with contrastive learning.

Wang Y, Liu Z, Ma X Genome Med. 2025; 17(1):21.

PMID: 40082941 PMC: 11907906. DOI: 10.1186/s13073-025-01449-1.


Augmenting the human interactome for disease prediction through gene networks inferred from human cell atlas.

Sung E, Cha J, Baek S, Lee I Anim Cells Syst (Seoul). 2025; 29(1):11-20.

PMID: 40066175 PMC: 11892045. DOI: 10.1080/19768354.2025.2472002.


AcImpute: a constraint-enhancing smooth-based approach for imputing single-cell RNA sequencing data.

Zhang W, Liu T, Zhang H, Li Y Bioinformatics. 2025; 41(3).

PMID: 40037523 PMC: 11890269. DOI: 10.1093/bioinformatics/btae711.


PbImpute: Precise Zero Discrimination and Balanced Imputation in Single-Cell RNA Sequencing Data.

Zhang Y, Wang Y, Liu X, Feng X J Chem Inf Model. 2025; 65(5):2670-2684.

PMID: 39957720 PMC: 11898086. DOI: 10.1021/acs.jcim.4c02125.


SeqBMC: Single-cell data processing using iterative block matrix completion algorithm based on matrix factorisation.

Lejun G, Like Y, Xinyi W, Shehai Z, Shuhua X IET Syst Biol. 2025; 19(1):e70003.

PMID: 39943646 PMC: 11821729. DOI: 10.1049/syb2.70003.


References
1.
Jiang L, Chen H, Pinello L, Yuan G . GiniClust: detecting rare cell types from single-cell gene expression data with Gini index. Genome Biol. 2016; 17(1):144. PMC: 4930624. DOI: 10.1186/s13059-016-1010-4. View

2.
Friedman J, Hastie T, Tibshirani R . Regularization Paths for Generalized Linear Models via Coordinate Descent. J Stat Softw. 2010; 33(1):1-22. PMC: 2929880. View

3.
Zeisel A, Munoz-Manchado A, Codeluppi S, Lonnerberg P, La Manno G, Jureus A . Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015; 347(6226):1138-42. DOI: 10.1126/science.aaa1934. View

4.
Padovan-Merhar O, Nair G, Biaesch A, Mayer A, Scarfone S, Foley S . Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms. Mol Cell. 2015; 58(2):339-52. PMC: 4402149. DOI: 10.1016/j.molcel.2015.03.005. View

5.
Baron M, Veres A, Wolock S, Faust A, Gaujoux R, Vetere A . A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure. Cell Syst. 2016; 3(4):346-360.e4. PMC: 5228327. DOI: 10.1016/j.cels.2016.08.011. View