» Articles » PMID: 29924988

Aberrant Striatal Activity in Parkinsonism and Levodopa-Induced Dyskinesia

Overview
Journal Cell Rep
Publisher Cell Press
Date 2018 Jun 21
PMID 29924988
Citations 61
Authors
Affiliations
Soon will be listed here.
Abstract

Action selection relies on the coordinated activity of striatal direct and indirect pathway medium spiny neurons (dMSNs and iMSNs, respectively). Loss of dopamine in Parkinson's disease is thought to disrupt this balance. While dopamine replacement with levodopa may restore normal function, the development of involuntary movements (levodopa-induced dyskinesia [LID]) limits therapy. How chronic dopamine loss and replacement with levodopa modulate the firing of identified MSNs in behaving animals is unknown. Using optogenetically labeled striatal single-unit recordings, we assess circuit dysfunction in parkinsonism and LID. Counter to current models, we found that following dopamine depletion, iMSN firing was elevated only during periods of immobility, while dMSN firing was dramatically and persistently reduced. Most notably, we identified a subpopulation of dMSNs with abnormally high levodopa-evoked firing rates, which correlated specifically with dyskinesia. These findings provide key insights into the circuit mechanisms underlying parkinsonism and LID, with implications for developing targeted therapies.

Citing Articles

Motor cortex stimulation ameliorates parkinsonian locomotor deficits: effectual and mechanistic differences from subthalamic modulation.

Lee L, Ngan C, Yang C, Wang R, Lai H, Chen C NPJ Parkinsons Dis. 2025; 11(1):32.

PMID: 39971974 PMC: 11840011. DOI: 10.1038/s41531-025-00879-3.


Complementary cognitive roles for D2-MSNs and D1-MSNs during interval timing.

Bruce R, Weber M, Bova A, Volkman R, Jacobs C, Sivakumar K Elife. 2025; 13.

PMID: 39812105 PMC: 11735027. DOI: 10.7554/eLife.96287.


Protocol for chemogenetic activation of basal ganglia D1-MSNs and behavioral assessments in a primate Parkinson's disease model.

Chen Y, Hong Z, Yan T, Zhu Y, Lin J, Liu T STAR Protoc. 2024; 5(4):103470.

PMID: 39644495 PMC: 11656076. DOI: 10.1016/j.xpro.2024.103470.


Enhancing striatal acetylcholine facilitates dopamine release and striatal output in parkinsonian mice.

Li H, Chen Z, Tan Y, Luo H, Lu C, Gao C Cell Biosci. 2024; 14(1):146.

PMID: 39627827 PMC: 11616140. DOI: 10.1186/s13578-024-01328-z.


Reduced striatal M4-cholinergic signaling following dopamine loss contributes to parkinsonian and l-DOPA-induced dyskinetic behaviors.

Nielsen B, Ford C Sci Adv. 2024; 10(47):eadp6301.

PMID: 39565858 PMC: 11578179. DOI: 10.1126/sciadv.adp6301.


References
1.
Alcacer C, Andreoli L, Sebastianutto I, Jakobsson J, Fieblinger T, Cenci M . Chemogenetic stimulation of striatal projection neurons modulates responses to Parkinson's disease therapy. J Clin Invest. 2017; 127(2):720-734. PMC: 5272195. DOI: 10.1172/JCI90132. View

2.
DeLong M . Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 1990; 13(7):281-5. DOI: 10.1016/0166-2236(90)90110-v. View

3.
Gage G, Stoetzner C, Wiltschko A, Berke J . Selective activation of striatal fast-spiking interneurons during choice execution. Neuron. 2010; 67(3):466-79. PMC: 2920892. DOI: 10.1016/j.neuron.2010.06.034. View

4.
Haber S, Fudge J, McFarland N . Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci. 2000; 20(6):2369-82. PMC: 6772499. View

5.
Ketzef M, Spigolon G, Johansson Y, Bonito-Oliva A, Fisone G, Silberberg G . Dopamine Depletion Impairs Bilateral Sensory Processing in the Striatum in a Pathway-Dependent Manner. Neuron. 2017; 94(4):855-865.e5. DOI: 10.1016/j.neuron.2017.05.004. View