» Articles » PMID: 29861818

Incorporating Mechanical Strain in Organs-on-a-chip: Lung and Skin

Overview
Date 2018 Jun 5
PMID 29861818
Citations 34
Authors
Affiliations
Soon will be listed here.
Abstract

In the last decade, the advent of microfabrication and microfluidics and an increased interest in cellular mechanobiology have triggered the development of novel microfluidic-based platforms. They aim to incorporate the mechanical strain environment that acts upon tissues and barriers of the human body. This article reviews those platforms, highlighting the different strains applied, and the actuation mechanisms and provides representative applications. A focus is placed on the skin and the lung barriers as examples, with a section that discusses the signaling pathways involved in the epithelium and the connective tissues.

Citing Articles

Modelling and targeting mechanical forces in organ fibrosis.

Mascharak S, Guo J, Griffin M, Berry C, Wan D, Longaker M Nat Rev Bioeng. 2024; 2(4):305-323.

PMID: 39552705 PMC: 11567675. DOI: 10.1038/s44222-023-00144-3.


Organ-on-a-Chip: ? Fundamentals and Design Aspects.

Morais A, Mendes M, Cordeiro M, Sousa J, Pais A, Mihaila S Pharmaceutics. 2024; 16(5).

PMID: 38794277 PMC: 11124787. DOI: 10.3390/pharmaceutics16050615.


Tiny Organs, Big Impact: How Microfluidic Organ-on-Chip Technology Is Revolutionizing Mucosal Tissues and Vasculature.

Dasgupta I, Rangineni D, Abdelsaid H, Ma Y, Bhushan A Bioengineering (Basel). 2024; 11(5).

PMID: 38790343 PMC: 11117503. DOI: 10.3390/bioengineering11050476.


A Comprehensive Review of Organ-on-a-Chip Technology and Its Applications.

Doost N, Srivastava S Biosensors (Basel). 2024; 14(5).

PMID: 38785699 PMC: 11118005. DOI: 10.3390/bios14050225.


An Insight on Microfluidic Organ-on-a-Chip Models for PM-Induced Pulmonary Complications.

Shah D, Dave B, Chorawala M, Prajapati B, Singh S, Elossaily G ACS Omega. 2024; 9(12):13534-13555.

PMID: 38559954 PMC: 10976395. DOI: 10.1021/acsomega.3c10271.


References
1.
Schmitt S, Hendricks P, Weir J, Somasundaram R, Sittampalam G, Nirmalanandhan V . Stretching mechanotransduction from the lung to the lab: approaches and physiological relevance in drug discovery. Assay Drug Dev Technol. 2012; 10(2):137-47. DOI: 10.1089/adt.2011.418. View

2.
Cabrera-Benitez N, Laffey J, Parotto M, Spieth P, Villar J, Zhang H . Mechanical ventilation-associated lung fibrosis in acute respiratory distress syndrome: a significant contributor to poor outcome. Anesthesiology. 2014; 121(1):189-98. PMC: 4991945. DOI: 10.1097/ALN.0000000000000264. View

3.
OConnor J, Gomez E . Biomechanics of TGFβ-induced epithelial-mesenchymal transition: implications for fibrosis and cancer. Clin Transl Med. 2014; 3:23. PMC: 4114144. DOI: 10.1186/2001-1326-3-23. View

4.
Varner V, Nelson C . Cellular and physical mechanisms of branching morphogenesis. Development. 2014; 141(14):2750-9. PMC: 4197615. DOI: 10.1242/dev.104794. View

5.
Zhou J, Niklason L . Microfluidic artificial "vessels" for dynamic mechanical stimulation of mesenchymal stem cells. Integr Biol (Camb). 2012; 4(12):1487-97. PMC: 3628532. DOI: 10.1039/c2ib00171c. View