» Articles » PMID: 2986147

Isolation and Characterization of an Olfactory Receptor Protein for Odorant Pyrazines

Overview
Specialty Science
Date 1985 May 1
PMID 2986147
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

The highly potent bell pepper odorant 2-isobutyl-3-[3H]methoxypyrazine [( 3H]IBMP) binds specifically and saturably to bovine and rat nasal epithelium. Specific binding is not detected in 11 other tissues assayed, and in the rat binding is 9 times higher in olfactory than in respiratory epithelium. We have purified to apparent homogeneity a soluble pyrazine odorant binding protein that constitutes approximately equal to 1% of the total soluble protein in bovine nasal epithelium. Polyacrylamide gel electrophoresis shows a single band of 19,000 Da and gel filtration data suggest that the native protein is a dimer of 38,000 Da. Binding of [3H]IBMP to the purified protein reveals two binding sites (Kd = 10 X 10(-9) M, Bmax = 135 pmol per mg of protein; Kd = 3 X 10(-6) M, Bmax = 25 nmol per mg of protein). The binding affinities of a homologous series of pyrazine odorants correlate with the human odor detection thresholds of these compounds. This correlation, together with the regional distribution of the protein, suggests that the protein is a physiologically relevant olfactory receptor.

Citing Articles

Ligand Binding Properties of Odorant-Binding Protein OBP5 from .

Moitrier L, Belloir C, Lalis M, Hou Y, Topin J, Briand L Biology (Basel). 2023; 12(1).

PMID: 36671695 PMC: 9855133. DOI: 10.3390/biology12010002.


An odorant-binding protein in the elephant's trunk is finely tuned to sex pheromone (Z)-7-dodecenyl acetate.

Zaremska V, Renzone G, Arena S, Ciaravolo V, Buberl A, Balfanz F Sci Rep. 2022; 12(1):19982.

PMID: 36411331 PMC: 9678865. DOI: 10.1038/s41598-022-24214-5.


Lipocalins in Arthropod Chemical Communication.

Zhu J, Iannucci A, Dani F, Knoll W, Pelosi P Genome Biol Evol. 2021; 13(6).

PMID: 33930146 PMC: 8214410. DOI: 10.1093/gbe/evab091.


Effects of time and temperature during melanging on the volatile profile of dark chocolate.

Clark C, Bettenhausen H, Heuberger A, Miller J, Yao L, Stone M Sci Rep. 2020; 10(1):14922.

PMID: 32913253 PMC: 7483446. DOI: 10.1038/s41598-020-71822-0.


Significance and Transformation of 3-Alkyl-2-Methoxypyrazines Through Grapes to Wine: Olfactory Properties, Metabolism, Biochemical Regulation, and the HP-MP Cycle.

Zhao X, Ju Y, Wei X, Dong S, Sun X, Fang Y Molecules. 2020; 24(24).

PMID: 31888183 PMC: 6943733. DOI: 10.3390/molecules24244598.


References
1.
Gennings J, Gower D, Bannister L . Studies on the receptors to 5alpha-androst-16-en-3-one and 5alpha-androst-16-en-3alpha-ol in sow nasal mucosa. Biochim Biophys Acta. 1977; 496(2):547-56. DOI: 10.1016/0304-4165(77)90335-x. View

2.
Bradford M . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72:248-54. DOI: 10.1016/0003-2697(76)90527-3. View

3.
Strange P, Koshland Jr D . Receptor interactions in a signalling system: competition between ribose receptor and galactose receptor in the chemotaxis response. Proc Natl Acad Sci U S A. 1976; 73(3):762-6. PMC: 335998. DOI: 10.1073/pnas.73.3.762. View

4.
Hartman B, Margolis F . Immunofluorescence localization of the olfactory marker protein. Brain Res. 1975; 96(1):176-80. DOI: 10.1016/0006-8993(75)90593-4. View

5.
Keller A, Margolis F . Immunological studies of the rat olfactory marker protein. J Neurochem. 1975; 24(6):1101-6. DOI: 10.1111/j.1471-4159.1975.tb03883.x. View