» Articles » PMID: 29758058

Structural Studies and Molecular Dynamics Simulations Suggest a Processive Mechanism of Exolytic Lytic Transglycosylase from Campylobacter Jejuni

Overview
Journal PLoS One
Date 2018 May 15
PMID 29758058
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

The bacterial soluble lytic transglycosylase (LT) breaks down the peptidoglycan (PG) layer during processes such as cell division. We present here crystal structures of the soluble LT Cj0843 from Campylobacter jejuni with and without bulgecin A inhibitor in the active site. Cj0843 has a doughnut shape similar but not identical to that of E. coli SLT70. The C-terminal catalytic domain is preceded by an L-domain, a large helical U-domain, a flexible linker, and a small N-terminal NU-domain. The flexible linker allows the NU-domain to reach over and complete the circular shape, using residues conserved in the Epsilonproteobacteria LT family. The inner surface of the Cj0843 doughnut is mostly positively charged including a pocket that has 8 Arg/Lys residues. Molecular dynamics simulations with PG strands revealed a potential functional role for this pocket in anchoring the negatively charged terminal tetrapeptide of the PG during several steps in the reaction including homing and aligning the PG strand for exolytic cleavage, and subsequent ratcheting of the PG strand to enhance processivity in degrading PG strands.

Citing Articles

Exploring the inhibition of the soluble lytic transglycosylase Cj0843c of Campylobacter jejuni via targeting different sites with different scaffolds.

Kumar V, Boorman J, Greenlee W, Zeng X, Lin J, van den Akker F Protein Sci. 2023; 32(7):e4683.

PMID: 37209283 PMC: 10273340. DOI: 10.1002/pro.4683.


Masters of Misdirection: Peptidoglycan Glycosidases in Bacterial Growth.

Weaver A, Taguchi A, Dorr T J Bacteriol. 2023; 205(3):e0042822.

PMID: 36757204 PMC: 10029718. DOI: 10.1128/jb.00428-22.


Lytic transglycosylases mitigate periplasmic crowding by degrading soluble cell wall turnover products.

Weaver A, Alvarez L, Rosch K, Ahmed A, Wang G, Van Nieuwenhze M Elife. 2022; 11.

PMID: 35073258 PMC: 8820737. DOI: 10.7554/eLife.73178.


Turnover Chemistry and Structural Characterization of the Cj0843c Lytic Transglycosylase of .

Kumar V, Mathure S, Lee M, Boorman J, Zeng X, Lin J Biochemistry. 2021; 60(14):1133-1144.

PMID: 33749238 PMC: 9067259. DOI: 10.1021/acs.biochem.1c00027.


Structural Characterization of Diazabicyclooctane β-Lactam "Enhancers" in Complex with Penicillin-Binding Proteins PBP2 and PBP3 of Pseudomonas aeruginosa.

Rajavel M, Kumar V, Nguyen H, Wyatt J, Marshall S, Papp-Wallace K mBio. 2021; 12(1).

PMID: 33593978 PMC: 8545096. DOI: 10.1128/mBio.03058-20.


References
1.
Chaput C, Labigne A, Boneca I . Characterization of Helicobacter pylori lytic transglycosylases Slt and MltD. J Bacteriol. 2006; 189(2):422-9. PMC: 1797392. DOI: 10.1128/JB.01270-06. View

2.
Scheurwater E, Reid C, Clarke A . Lytic transglycosylases: bacterial space-making autolysins. Int J Biochem Cell Biol. 2007; 40(4):586-91. DOI: 10.1016/j.biocel.2007.03.018. View

3.
Fibriansah G, Gliubich F, Thunnissen A . On the mechanism of peptidoglycan binding and cleavage by the endo-specific lytic transglycosylase MltE from Escherichia coli. Biochemistry. 2012; 51(45):9164-77. DOI: 10.1021/bi300900t. View

4.
Schuttelkopf A, van Aalten D . PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr. 2004; 60(Pt 8):1355-63. DOI: 10.1107/S0907444904011679. View

5.
Cloud K, Dillard J . Mutation of a single lytic transglycosylase causes aberrant septation and inhibits cell separation of Neisseria gonorrhoeae. J Bacteriol. 2004; 186(22):7811-4. PMC: 524912. DOI: 10.1128/JB.186.22.7811-7814.2004. View