» Articles » PMID: 29740064

Tortuous Pore Path Through the Glaucomatous Lamina Cribrosa

Overview
Journal Sci Rep
Specialty Science
Date 2018 May 10
PMID 29740064
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

The lamina cribrosa is a primary site of damage in glaucoma. While mechanical distortion is hypothesized to cause reduction of axoplasmic flow, little is known about how the pores, which contains the retinal ganglion cell axons, traverse the lamina cribrosa. We investigated lamina cribrosa pore paths in vivo to quantify differences in tortuosity of pore paths between healthy and glaucomatous eyes. We imaged 16 healthy, 23 glaucoma suspect and 48 glaucomatous eyes from 70 subjects using a swept source optical coherence tomography system. The lamina cribrosa pores were automatically segmented using a previously described segmentation algorithm. Individual pore paths were automatically tracked through the depth of the lamina cribrosa using custom software. Pore path convergence to the optic nerve center and tortuosity was quantified for each eye. We found that lamina cribrosa pore pathways traverse the lamina cribrosa closer to the optic nerve center along the depth of the lamina cribrosa regardless of disease severity or diagnostic category. In addition, pores of glaucoma eyes take a more tortuous path through the lamina cribrosa compared to those of healthy eyes, suggesting a potential mechanism for reduction of axoplasmic flow in glaucoma.

Citing Articles

The association between asymmetric stress distribution on the lamina cribrosa and glaucoma progression.

Kang E, Park J, Yoo C, Kim Y Graefes Arch Clin Exp Ophthalmol. 2024; .

PMID: 39470777 DOI: 10.1007/s00417-024-06670-z.


Features Associated with Visible Lamina Cribrosa Pores in Individuals of African Ancestry with Glaucoma: Primary Open-Angle African Ancestry Glaucoma Genetics (POAAGG) Study.

Jordan J, Daniel E, Chen Y, Salowe R, Zhu Y, Miller-Ellis E Vision (Basel). 2024; 8(2).

PMID: 38651445 PMC: 11036295. DOI: 10.3390/vision8020024.


Analysis of the relationship between axial length, optic disc morphology, and regional variations in retinal vessel density in young adults with healthy eyes.

Chen Y, Rong H, Liu Y, Gao H, Sun Z, Dang W Front Med (Lausanne). 2024; 10:1280048.

PMID: 38239609 PMC: 10794307. DOI: 10.3389/fmed.2023.1280048.


Optical Coherence Tomography and Optical Coherence Tomography Angiography: Essential Tools for Detecting Glaucoma and Disease Progression.

Shiga Y, Nishida T, Jeoung J, Di Polo A, Fortune B Front Ophthalmol (Lausanne). 2023; 3.

PMID: 37982032 PMC: 10655832. DOI: 10.3389/fopht.2023.1217125.


Cell-Based Therapies for Glaucoma.

Luis J, Eastlake K, Lamb W, Limb G, Jayaram H, Khaw P Transl Vis Sci Technol. 2023; 12(7):23.

PMID: 37494052 PMC: 10383000. DOI: 10.1167/tvst.12.7.23.


References
1.
Akagi T, Hangai M, Takayama K, Nonaka A, Ooto S, Yoshimura N . In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci. 2012; 53(7):4111-9. DOI: 10.1167/iovs.11-7536. View

2.
Minckler D, Tso M, ZIMMERMAN L . A light microscopic, autoradiographic study of axoplasmic transport in the optic nerve head during ocular hypotony, increased intraocular pressure, and papilledema. Am J Ophthalmol. 1976; 82(5):741-57. DOI: 10.1016/0002-9394(76)90012-x. View

3.
You J, Park S, Su D, Teng C, Liebmann J, Ritch R . Focal lamina cribrosa defects associated with glaucomatous rim thinning and acquired pits. JAMA Ophthalmol. 2013; 131(3):314-20. DOI: 10.1001/jamaophthalmol.2013.1926. View

4.
Wang B, Nevins J, Nadler Z, Wollstein G, Ishikawa H, Bilonick R . Reproducibility of in-vivo OCT measured three-dimensional human lamina cribrosa microarchitecture. PLoS One. 2014; 9(4):e95526. PMC: 3991692. DOI: 10.1371/journal.pone.0095526. View

5.
Sigal I, Wang B, Strouthidis N, Akagi T, Girard M . Recent advances in OCT imaging of the lamina cribrosa. Br J Ophthalmol. 2014; 98 Suppl 2:ii34-9. PMC: 4208343. DOI: 10.1136/bjophthalmol-2013-304751. View