» Articles » PMID: 20940894

Ultrahigh Speed 1050nm Swept Source/Fourier Domain OCT Retinal and Anterior Segment Imaging at 100,000 to 400,000 Axial Scans Per Second

Overview
Journal Opt Express
Date 2010 Oct 14
PMID 20940894
Citations 184
Authors
Affiliations
Soon will be listed here.
Abstract

We demonstrate ultrahigh speed swept source/Fourier domain ophthalmic OCT imaging using a short cavity swept laser at 100,000 - 400,000 axial scan rates. Several design configurations illustrate tradeoffs in imaging speed, sensitivity, axial resolution, and imaging depth. Variable rate A/D optical clocking is used to acquire linear-in-k OCT fringe data at 100 kHz axial scan rate with 5.3 um axial resolution in tissue. Fixed rate sampling at 1 GSPS achieves a 7.5mm imaging range in tissue with 6.0 um axial resolution at 100 kHz axial scan rate. A 200 kHz axial scan rate with 5.3 um axial resolution over 4mm imaging range is achieved by buffering the laser sweep. Dual spot OCT using two parallel interferometers achieves 400 kHz axial scan rate, almost 2X faster than previous 1050 nm ophthalmic results and 20X faster than current commercial instruments. Superior sensitivity roll-off performance is shown. Imaging is demonstrated in the human retina and anterior segment. Wide field 12x12 mm data sets include the macula and optic nerve head. Small area, high density imaging shows individual cone photoreceptors. The 7.5 mm imaging range configuration can show the cornea, iris, and anterior lens in a single image. These improvements in imaging speed and depth range provide important advantages for ophthalmic imaging. The ability to rapidly acquire 3D-OCT data over a wide field of view promises to simplify examination protocols. The ability to image fine structures can provide detailed information on focal pathologies. The large imaging range and improved image penetration at 1050 m wavelengths promises to improve performance for instrumentation which images both the retina and anterior eye. These advantages suggest that swept source OCT at 1050 nm wavelengths will play an important role in future ophthalmic instrumentation.

Citing Articles

Comparison of macular retinal thickness measurements using spectral-domain and swept-source optical coherence tomography in healthy eyes.

Wan H, Wu Z, Liu Z, Qin B Front Med (Lausanne). 2025; 12:1529719.

PMID: 39958829 PMC: 11825460. DOI: 10.3389/fmed.2025.1529719.


A Survey on Optical Coherence Tomography-Technology and Application.

Mokhtari A, Maris B, Fiorini P Bioengineering (Basel). 2025; 12(1).

PMID: 39851339 PMC: 11761895. DOI: 10.3390/bioengineering12010065.


Stick-slip nonuniform rotation distortion correction in distal scanning optical coherence tomography catheters.

Mavadia-Shukla J, Zhang J, Li K, Li X J Innov Opt Health Sci. 2024; 13(6).

PMID: 39736897 PMC: 11684757. DOI: 10.1142/s1793545820500303.


Choriocapillaris reduction accurately discriminates against early-onset Alzheimer's disease.

Kwapong W, Tang F, Liu P, Zhang Z, Cao L, Feng Z Alzheimers Dement. 2024; 20(6):4185-4198.

PMID: 38747519 PMC: 11180859. DOI: 10.1002/alz.13871.


Impact of lens autofluorescence and opacification on retinal imaging.

von der Emde L, Rennen G, Vaisband M, Hasenauer J, Liegl R, Fleckenstein M BMJ Open Ophthalmol. 2024; 9(1).

PMID: 38684375 PMC: 11086461. DOI: 10.1136/bmjophth-2023-001628.


References
1.
Zhang Y, Cense B, Rha J, Jonnal R, Gao W, Zawadzki R . High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography. Opt Express. 2008; 14(10):4380-94. PMC: 2605071. DOI: 10.1364/OE.14.004380. View

2.
Esmaeelpour M, Povazay B, Hermann B, Hofer B, Kajic V, Kapoor K . Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients. Invest Ophthalmol Vis Sci. 2010; 51(10):5260-6. DOI: 10.1167/iovs.10-5196. View

3.
Hirsch J, Curcio C . The spatial resolution capacity of human foveal retina. Vision Res. 1989; 29(9):1095-101. DOI: 10.1016/0042-6989(89)90058-8. View

4.
Chinn S, Swanson E, Fujimoto J . Optical coherence tomography using a frequency-tunable optical source. Opt Lett. 1997; 22(5):340-2. DOI: 10.1364/ol.22.000340. View

5.
Curcio C, Sloan K, KALINA R, Hendrickson A . Human photoreceptor topography. J Comp Neurol. 1990; 292(4):497-523. DOI: 10.1002/cne.902920402. View