Determination of Absolute Configuration and Binding Efficacy of Benzimidazole-based FabI Inhibitors Through the Support of Electronic Circular Dichroism and MM-GBSA Techniques
Overview
Authors
Affiliations
We have previously reported benzimidazole-based compounds to be potent inhibitors of FabI for Francisella tularensis (FtFabI), making them promising antimicrobial hits. Optically active enantiomers exhibit markedly differing affinities toward FtFabI. The IC of benzimidazole (-)-1 is ∼100× lower than the (+)-enantiomer, with similar results for the 2 enantiomers. Determining the absolute configuration for these optical compounds and elucidating their binding modes is important for further design. Electronic circular dichroism (ECD) quantum calculations have become important in determining absolute configurations of optical compounds. We determined the absolute configuration of (-)/(+)-1 and (-)/(+)-2 by comparing experimental spectra and theoretical density functional theory (DFT) simulations of ECD spectra at the B3LYP/6-311+G(2d, p) level using Gaussian09. Comparison of experimental and calculated ECD spectra indicates that the S configuration corresponds to the (-)-rotation for both compounds 1 and 2, while the R configuration corresponds to the (+)-rotation. Further, molecular dynamics simulations and MM-GBSA binding energy calculations for these two pairs of enantiomers with FtFabI show much tighter binding MM-GBSA free energies for S-1 and S-2 than for their enantiomers, R-1 and R-2, consistent with the S configuration being the more active one, and with the ECD determination of the S configuration corresponding to (-) and the R configuration corresponding to (+). Thus, our computational studies allow us to assign (-) to (S)- and (+) to (R)- for compounds 1 and 2, and to further evaluate structural changes to improve efficacy.
Lopes D, Hoye T, Alvarenga E Magn Reson Chem. 2020; 59(1):43-51.
PMID: 32621355 PMC: 7985851. DOI: 10.1002/mrc.5073.
Structural approaches to pathway-specific antimicrobial agents.
Johnson M, Fung L Transl Res. 2020; 220:114-121.
PMID: 32105648 PMC: 7293926. DOI: 10.1016/j.trsl.2020.02.001.
Chen J, Wang X, Pang L, Zhang J, Zhu T Nucleic Acids Res. 2019; 47(13):6618-6631.
PMID: 31173143 PMC: 6649850. DOI: 10.1093/nar/gkz499.
Li Y, Cong Y, Feng G, Zhong S, Zhang J, Sun H Struct Dyn. 2019; 5(6):064101.
PMID: 30868080 PMC: 6404944. DOI: 10.1063/1.5058172.
Discovery of small molecule inhibitors of adenovirus by disrupting E3-19K/HLA-A2 interactions.
Ren J, Dsouza N, Deng H, Lee H, Bouvier M, Johnson M Bioorg Med Chem Lett. 2018; 28(17):2837-2841.
PMID: 30077568 PMC: 6109590. DOI: 10.1016/j.bmcl.2018.07.036.