» Articles » PMID: 29684016

Correcting for Batch Effects in Case-control Microbiome Studies

Overview
Specialty Biology
Date 2018 Apr 24
PMID 29684016
Citations 79
Authors
Affiliations
Soon will be listed here.
Abstract

High-throughput data generation platforms, like mass-spectrometry, microarrays, and second-generation sequencing are susceptible to batch effects due to run-to-run variation in reagents, equipment, protocols, or personnel. Currently, batch correction methods are not commonly applied to microbiome sequencing datasets. In this paper, we compare different batch-correction methods applied to microbiome case-control studies. We introduce a model-free normalization procedure where features (i.e. bacterial taxa) in case samples are converted to percentiles of the equivalent features in control samples within a study prior to pooling data across studies. We look at how this percentile-normalization method compares to traditional meta-analysis methods for combining independent p-values and to limma and ComBat, widely used batch-correction models developed for RNA microarray data. Overall, we show that percentile-normalization is a simple, non-parametric approach for correcting batch effects and improving sensitivity in case-control meta-analyses.

Citing Articles

Composite quantile regression approach to batch effect correction in microbiome data.

Park J, Park T Front Microbiol. 2025; 16:1484183.

PMID: 40071205 PMC: 11893821. DOI: 10.3389/fmicb.2025.1484183.


A Systematic Review and Meta-Analysis of 16S rRNA and Cancer Microbiome Atlas Datasets to Characterize Microbiota Signatures in Normal Breast, Mastitis, and Breast Cancer.

Rad S, Yeo K, Wu F, Li R, Nourmohammadi S, Tomita Y Microorganisms. 2025; 13(2).

PMID: 40005832 PMC: 11858161. DOI: 10.3390/microorganisms13020467.


Semisynthetic simulation for microbiome data analysis.

Sankaran K, Kodikara S, Li J, Le Cao K Brief Bioinform. 2025; 26(1).

PMID: 39927858 PMC: 11808806. DOI: 10.1093/bib/bbaf051.


Best practices for the experimental design of one health studies on companion animal and owner microbiomes - From data collection to analysis.

Clougher S, Niedziela D, Versura P, Mulcahy G One Health. 2025; 20:100977.

PMID: 39925695 PMC: 11804817. DOI: 10.1016/j.onehlt.2025.100977.


A Survey of Statistical Methods for Microbiome Data Analysis.

Lutz K, Jiang S, Neugent M, De Nisco N, Zhan X, Li Q Front Appl Math Stat. 2024; 8.

PMID: 39575140 PMC: 11581570. DOI: 10.3389/fams.2022.884810.


References
1.
Wu G, Chen J, Hoffmann C, Bittinger K, Chen Y, Keilbaugh S . Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011; 334(6052):105-8. PMC: 3368382. DOI: 10.1126/science.1208344. View

2.
Zeller G, Tap J, Voigt A, Sunagawa S, Kultima J, Costea P . Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol Syst Biol. 2014; 10:766. PMC: 4299606. DOI: 10.15252/msb.20145645. View

3.
Chase J, Fouquier J, Zare M, Sonderegger D, Knight R, Kelley S . Geography and Location Are the Primary Drivers of Office Microbiome Composition. mSystems. 2016; 1(2). PMC: 5069741. DOI: 10.1128/mSystems.00022-16. View

4.
Goodrich J, Waters J, Poole A, Sutter J, Koren O, Blekhman R . Human genetics shape the gut microbiome. Cell. 2014; 159(4):789-99. PMC: 4255478. DOI: 10.1016/j.cell.2014.09.053. View

5.
Vogtmann E, Hua X, Zeller G, Sunagawa S, Voigt A, Hercog R . Colorectal Cancer and the Human Gut Microbiome: Reproducibility with Whole-Genome Shotgun Sequencing. PLoS One. 2016; 11(5):e0155362. PMC: 4865240. DOI: 10.1371/journal.pone.0155362. View