» Articles » PMID: 29654148

DRUG-NEM: Optimizing Drug Combinations Using Single-cell Perturbation Response to Account for Intratumoral Heterogeneity

Overview
Specialty Science
Date 2018 Apr 15
PMID 29654148
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

An individual malignant tumor is composed of a heterogeneous collection of single cells with distinct molecular and phenotypic features, a phenomenon termed intratumoral heterogeneity. Intratumoral heterogeneity poses challenges for cancer treatment, motivating the need for combination therapies. Single-cell technologies are now available to guide effective drug combinations by accounting for intratumoral heterogeneity through the analysis of the signaling perturbations of an individual tumor sample screened by a drug panel. In particular, Mass Cytometry Time-of-Flight (CyTOF) is a high-throughput single-cell technology that enables the simultaneous measurements of multiple ([Formula: see text]40) intracellular and surface markers at the level of single cells for hundreds of thousands of cells in a sample. We developed a computational framework, entitled Drug Nested Effects Models (DRUG-NEM), to analyze CyTOF single-drug perturbation data for the purpose of individualizing drug combinations. DRUG-NEM optimizes drug combinations by choosing the minimum number of drugs that produce the maximal desired intracellular effects based on nested effects modeling. We demonstrate the performance of DRUG-NEM using single-cell drug perturbation data from tumor cell lines and primary leukemia samples.

Citing Articles

Single-cell omics: experimental workflow, data analyses and applications.

Sun F, Li H, Sun D, Fu S, Gu L, Shao X Sci China Life Sci. 2024; 68(1):5-102.

PMID: 39060615 DOI: 10.1007/s11427-023-2561-0.


Personalized tumor combination therapy optimization using the single-cell transcriptome.

Tang C, Fu S, Jin X, Li W, Xing F, Duan B Genome Med. 2023; 15(1):105.

PMID: 38041202 PMC: 10691165. DOI: 10.1186/s13073-023-01256-6.


Single-cell analysis targeting the proteome.

Labib M, Kelley S Nat Rev Chem. 2023; 4(3):143-158.

PMID: 37128021 DOI: 10.1038/s41570-020-0162-7.


Advances in Mass Spectrometry-Based Single Cell Analysis.

Lee S, Vu H, Lee J, Lim H, Kim M Biology (Basel). 2023; 12(3).

PMID: 36979087 PMC: 10045136. DOI: 10.3390/biology12030395.


Achieving a Deeper Understanding of Drug Metabolism and Responses Using Single-Cell Technologies.

Wheeler A, Eberhard C, Mosher E, Yuan Y, Wilkins H, Seneviratne H Drug Metab Dispos. 2023; 51(3):350-359.

PMID: 36627162 PMC: 10029823. DOI: 10.1124/dmd.122.001043.


References
1.
Bagheri N, Shiina M, Lauffenburger D, Korn W . A dynamical systems model for combinatorial cancer therapy enhances oncolytic adenovirus efficacy by MEK-inhibition. PLoS Comput Biol. 2011; 7(2):e1001085. PMC: 3040662. DOI: 10.1371/journal.pcbi.1001085. View

2.
Li S, Zhang B, Zhang N . Network target for screening synergistic drug combinations with application to traditional Chinese medicine. BMC Syst Biol. 2011; 5 Suppl 1:S10. PMC: 3121110. DOI: 10.1186/1752-0509-5-S1-S10. View

3.
Koschny R, Walczak H, Ganten T . The promise of TRAIL--potential and risks of a novel anticancer therapy. J Mol Med (Berl). 2007; 85(9):923-35. DOI: 10.1007/s00109-007-0194-1. View

4.
Lee M, Ye A, Gardino A, Heijink A, Sorger P, MacBeath G . Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell. 2012; 149(4):780-94. PMC: 3501264. DOI: 10.1016/j.cell.2012.03.031. View

5.
Frohlich H, Fellmann M, Sultmann H, Poustka A, Beissbarth T . Estimating large-scale signaling networks through nested effect models with intervention effects from microarray data. Bioinformatics. 2008; 24(22):2650-6. PMC: 2579711. DOI: 10.1093/bioinformatics/btm634. View