» Articles » PMID: 29555775

Identification and Biosynthesis of Thymidine Hypermodifications in the Genomic DNA of Widespread Bacterial Viruses

Overview
Specialty Science
Date 2018 Mar 21
PMID 29555775
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

Certain viruses of bacteria (bacteriophages) enzymatically hypermodify their DNA to protect their genetic material from host restriction endonuclease-mediated cleavage. Historically, it has been known that virion DNAs from the phage ΦW-14 and the phage SP10 contain the hypermodified pyrimidines α-putrescinylthymidine and α-glutamylthymidine, respectively. These bases derive from the modification of 5-hydroxymethyl-2'-deoxyuridine (5-hmdU) in newly replicated phage DNA via a pyrophosphorylated intermediate. Like ΦW-14 and SP10, the phage M6 and the phage ViI encode kinase homologs predicted to phosphorylate 5-hmdU DNA but have uncharacterized nucleotide content [Iyer et al. (2013) 41:7635-7655]. We report here the discovery and characterization of two bases, 5-(2-aminoethoxy)methyluridine (5-emdU) and 5-(2-aminoethyl)uridine (5-edU), in the virion DNA of ViI and M6 phages, respectively. Furthermore, we show that recombinant expression of five gene products encoded by phage ViI is sufficient to reconstitute the formation of 5-emdU in vitro. These findings point to an unexplored diversity of DNA modifications and the underlying biochemistry of their formation.

Citing Articles

Bacteriophage-related epigenetic natural and non-natural pyrimidine nucleotides and their influence on transcription with T7 RNA polymerase.

Gracias F, Pohl R, Sykorova V, Hocek M Commun Chem. 2024; 7(1):256.

PMID: 39521867 PMC: 11550810. DOI: 10.1038/s42004-024-01354-5.


Structural insights into the biosynthetic mechanism of Nα-GlyT and 5-NmdU hypermodifications of DNA.

Wen Y, Guo W, Meng C, Yang J, Xu S, Chen H Nucleic Acids Res. 2024; 52(18):11083-11097.

PMID: 39268585 PMC: 11472151. DOI: 10.1093/nar/gkae784.


Structural analysis of the BisI family of modification dependent restriction endonucleases.

Szafran K, Rafalski D, Skowronek K, Wojciechowski M, Kazrani A, Gilski M Nucleic Acids Res. 2024; 52(15):9103-9118.

PMID: 39041409 PMC: 11347163. DOI: 10.1093/nar/gkae634.


Characterization of crAss-like phage isolates highlights Crassvirales genetic heterogeneity and worldwide distribution.

Ramos-Barbero M, Gomez-Gomez C, Sala-Comorera L, Rodriguez-Rubio L, Morales-Cortes S, Mendoza-Barbera E Nat Commun. 2023; 14(1):4295.

PMID: 37463935 PMC: 10354031. DOI: 10.1038/s41467-023-40098-z.


Base-excision restriction enzymes: expanding the world of epigenetic immune systems.

Kojima K, Kobayashi I DNA Res. 2023; 30(4).

PMID: 37148195 PMC: 10273834. DOI: 10.1093/dnares/dsad009.


References
1.
Labrie S, Samson J, Moineau S . Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010; 8(5):317-27. DOI: 10.1038/nrmicro2315. View

2.
Hayashi H, Nakanishi K, Brandon C, MARMUR J . Structure and synthesis of dihydroxypentyluracil from bacteriophage SP-15 deoxyribonucleic acid. J Am Chem Soc. 1973; 95(26):8749-57. DOI: 10.1021/ja00807a041. View

3.
Pickard D, Toribio A, Petty N, van Tonder A, Yu L, Goulding D . A conserved acetyl esterase domain targets diverse bacteriophages to the Vi capsular receptor of Salmonella enterica serovar Typhi. J Bacteriol. 2010; 192(21):5746-54. PMC: 2953684. DOI: 10.1128/JB.00659-10. View

4.
Weigele P, Raleigh E . Biosynthesis and Function of Modified Bases in Bacteria and Their Viruses. Chem Rev. 2016; 116(20):12655-12687. DOI: 10.1021/acs.chemrev.6b00114. View

5.
Ceyssens P, Mesyanzhinov V, Sykilinda N, Briers Y, Roucourt B, Lavigne R . The genome and structural proteome of YuA, a new Pseudomonas aeruginosa phage resembling M6. J Bacteriol. 2007; 190(4):1429-35. PMC: 2238194. DOI: 10.1128/JB.01441-07. View