» Articles » PMID: 29555761

Dimeric Sorting Code for Concentrative Cargo Selection by the COPII Coat

Overview
Specialty Science
Date 2018 Mar 21
PMID 29555761
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

The flow of cargo vesicles along the secretory pathway requires concerted action among various regulators. The COPII complex, assembled by the activated SAR1 GTPases on the surface of the endoplasmic reticulum, orchestrates protein interactions to package cargos and generate transport vesicles en route to the Golgi. The dynamic nature of COPII, however, hinders analysis with conventional biochemical assays. Here we apply proximity-dependent biotinylation labeling to capture the dynamics of COPII transport in cells. When SAR1B was fused with a promiscuous biotin ligase, BirA*, the fusion protein SAR1B-BirA* biotinylates and thus enables the capture of COPII machinery and cargos in a GTP-dependent manner. Biochemical and pulse-chase imaging experiments demonstrate that the COPII coat undergoes a dynamic cycle of engagement-disengagement with the transmembrane cargo receptor LMAN1/ERGIC53. LMAN1 undergoes a process of concentrative sorting by the COPII coat, via a dimeric sorting code generated by oligomerization of the cargo receptor. Similar oligomerization events have been observed with other COPII sorting signals, suggesting that dimeric/multimeric sorting codes may serve as a general mechanism to generate selectivity of cargo sorting.

Citing Articles

ER export via SURF4 uses diverse mechanisms of both client and coat engagement.

Maldutyte J, Li X, Gomez-Navarro N, Robertson E, Miller E J Cell Biol. 2024; 224(1).

PMID: 39531033 PMC: 11557686. DOI: 10.1083/jcb.202406103.


Clinical, Laboratory, Molecular, and Reproductive Aspects of Combined Deficiency of Factors V and VIII.

Yakovleva E, Zhang B Semin Thromb Hemost. 2024; 51(2):116-127.

PMID: 39209292 PMC: 11839339. DOI: 10.1055/s-0044-1789019.


The ufmylation cascade controls COPII recruitment, anterograde transport, and sorting of nascent GPCRs at ER.

Xu X, Huang W, Bryant C, Dong Z, Li H, Wu G Sci Adv. 2024; 10(25):eadm9216.

PMID: 38905340 PMC: 11192079. DOI: 10.1126/sciadv.adm9216.


COPII cage assembly factor Sec13 integrates information flow regulating endomembrane function in response to human variation.

Angles F, Gupta V, Wang C, Balch W Sci Rep. 2024; 14(1):10160.

PMID: 38698045 PMC: 11065896. DOI: 10.1038/s41598-024-60687-2.


Nutrient deprivation alters the rate of COPII subunit recruitment at ER subdomains to tune secretory protein transport.

Kasberg W, Luong P, Swift K, Audhya A Nat Commun. 2023; 14(1):8140.

PMID: 38066006 PMC: 10709328. DOI: 10.1038/s41467-023-44002-7.


References
1.
Itin C, Foguet M, Kappeler F, Klumperman J, Hauri H . Recycling of the endoplasmic reticulum/Golgi intermediate compartment protein ERGIC-53 in the secretory pathway. Biochem Soc Trans. 1995; 23(3):541-4. DOI: 10.1042/bst0230541. View

2.
Lambert J, Tucholska M, Go C, Knight J, Gingras A . Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes. J Proteomics. 2014; 118:81-94. PMC: 4383713. DOI: 10.1016/j.jprot.2014.09.011. View

3.
Boncompain G, Divoux S, Gareil N, de Forges H, Lescure A, Latreche L . Synchronization of secretory protein traffic in populations of cells. Nat Methods. 2012; 9(5):493-8. DOI: 10.1038/nmeth.1928. View

4.
Rowe T, Aridor M, McCaffery J, Plutner H, Nuoffer C, Balch W . COPII vesicles derived from mammalian endoplasmic reticulum microsomes recruit COPI. J Cell Biol. 1996; 135(4):895-911. PMC: 2133376. DOI: 10.1083/jcb.135.4.895. View

5.
Klumperman J, Schweizer A, Clausen H, Tang B, Hong W, Oorschot V . The recycling pathway of protein ERGIC-53 and dynamics of the ER-Golgi intermediate compartment. J Cell Sci. 1998; 111 ( Pt 22):3411-25. DOI: 10.1242/jcs.111.22.3411. View