» Articles » PMID: 29540681

Intermembrane Crosstalk Drives Inner-membrane Protein Organization in Escherichia Coli

Overview
Journal Nat Commun
Specialty Biology
Date 2018 Mar 16
PMID 29540681
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

Gram-negative bacteria depend on energised protein complexes that connect the two membranes of the cell envelope. However, β-barrel outer-membrane proteins (OMPs) and α-helical inner-membrane proteins (IMPs) display quite different organisation. OMPs cluster into islands that restrict their lateral mobility, while IMPs generally diffuse throughout the cell. Here, using live cell imaging of Escherichia coli, we demonstrate that when transient, energy-dependent transmembrane connections are formed, IMPs become subjugated by the inherent organisation of OMPs and that such connections impact IMP function. We show that while establishing a translocon for import, the colicin ColE9 sequesters the IMPs of the proton motive force (PMF)-linked Tol-Pal complex into islands mirroring those of colicin-bound OMPs. Through this imposed organisation, the bacteriocin subverts the outer-membrane stabilising role of Tol-Pal, blocking its recruitment to cell division sites and slowing membrane constriction. The ordering of IMPs by OMPs via an energised inter-membrane bridge represents an emerging functional paradigm in cell envelope biology.

Citing Articles

The Tol Pal system integrates maintenance of the three layered cell envelope.

Szczepaniak J, Webby M NPJ Antimicrob Resist. 2025; 2(1):46.

PMID: 39843782 PMC: 11721397. DOI: 10.1038/s44259-024-00065-0.


Cell division cycle fluctuation of Pal concentration in Escherichia coli.

Mertens L, Liu X, Verheul J, Egan A, Vollmer W, den Blaauwen T Access Microbiol. 2024; 6(11).

PMID: 39539348 PMC: 11559426. DOI: 10.1099/acmi.0.000759.v3.


Synthesis of colicin Ia neoglycoproteins: tools towards glyco-engineering of bacterial cell surfaces.

Hatton N, Wilson L, Baumann C, Fascione M RSC Adv. 2024; 14(40):29106-29112.

PMID: 39282067 PMC: 11394469. DOI: 10.1039/d4ra04774e.


Tunable force transduction through the cell envelope.

Williams-Jones D, Webby M, Press C, Gradon J, Armstrong S, Szczepaniak J Proc Natl Acad Sci U S A. 2023; 120(47):e2306707120.

PMID: 37972066 PMC: 10666116. DOI: 10.1073/pnas.2306707120.


Single-molecule dynamics show a transient lipopolysaccharide transport bridge.

Tork L, Moffatt C, Bernhardt T, Garner E, Kahne D Nature. 2023; 623(7988):814-819.

PMID: 37938784 PMC: 10842706. DOI: 10.1038/s41586-023-06709-x.


References
1.
Cascales E, Gavioli M, Sturgis J, Lloubes R . Proton motive force drives the interaction of the inner membrane TolA and outer membrane pal proteins in Escherichia coli. Mol Microbiol. 2000; 38(4):904-15. DOI: 10.1046/j.1365-2958.2000.02190.x. View

2.
Bonsor D, Hecht O, Vankemmelbeke M, Sharma A, Krachler A, Housden N . Allosteric beta-propeller signalling in TolB and its manipulation by translocating colicins. EMBO J. 2009; 28(18):2846-57. PMC: 2750012. DOI: 10.1038/emboj.2009.224. View

3.
Faure L, Fiche J, Espinosa L, Ducret A, Anantharaman V, Luciano J . The mechanism of force transmission at bacterial focal adhesion complexes. Nature. 2016; 539(7630):530-535. PMC: 5465867. DOI: 10.1038/nature20121. View

4.
Leake M, Chandler J, Wadhams G, Bai F, Berry R, Armitage J . Stoichiometry and turnover in single, functioning membrane protein complexes. Nature. 2006; 443(7109):355-8. DOI: 10.1038/nature05135. View

5.
Durand E, Nguyen V, Zoued A, Logger L, Pehau-Arnaudet G, Aschtgen M . Biogenesis and structure of a type VI secretion membrane core complex. Nature. 2015; 523(7562):555-60. DOI: 10.1038/nature14667. View