Mora J, Pott D, Osorio S, Vallarino J
Front Genet. 2022; 13:870976.
PMID: 35586570
PMC: 9108539.
DOI: 10.3389/fgene.2022.870976.
Stogios P, Liston S, Semper C, Quade B, Michalska K, Evdokimova E
Life Sci Alliance. 2022; 5(8).
PMID: 35512834
PMC: 9074039.
DOI: 10.26508/lsa.202101358.
Nakamura K, Nagaki K, Matsutani M, Adachi O, Kataoka N, Ano Y
Appl Microbiol Biotechnol. 2021; 105(14-15):5883-5894.
PMID: 34390353
DOI: 10.1007/s00253-021-11476-8.
Liu C, Liu Y, Sun Q, Jiang C, Liu S
AMB Express. 2015; 5:7.
PMID: 25852984
PMC: 4314829.
DOI: 10.1186/s13568-014-0087-y.
Cheung V, Xue B, Hernandez-Valladares M, Go M, Tung A, Aguda A
PLoS One. 2014; 9(7):e103598.
PMID: 25072253
PMC: 4114755.
DOI: 10.1371/journal.pone.0103598.
Regulation of mammalian siderophore 2,5-DHBA in the innate immune response to infection.
Liu Z, Reba S, Chen W, Porwal S, Boom W, Petersen R
J Exp Med. 2014; 211(6):1197-213.
PMID: 24863067
PMC: 4042634.
DOI: 10.1084/jem.20132629.
Discovery of selective inhibitors of the Clostridium difficile dehydroquinate dehydratase.
Ratia K, Light S, Antanasijevic A, Anderson W, Caffrey M, Lavie A
PLoS One. 2014; 9(2):e89356.
PMID: 24586713
PMC: 3931744.
DOI: 10.1371/journal.pone.0089356.
Crystal structure of a type II dehydroquinate dehydratase-like protein from Bifidobacterium longum.
Light S, Krishna S, Bergan R, Lavie A, Anderson W
J Struct Funct Genomics. 2013; 14(1):25-30.
PMID: 23539270
PMC: 3878977.
DOI: 10.1007/s10969-013-9149-7.
Reassessing the type I dehydroquinate dehydratase catalytic triad: kinetic and structural studies of Glu86 mutants.
Light S, Anderson W, Lavie A
Protein Sci. 2013; 22(4):418-24.
PMID: 23341204
PMC: 3610047.
DOI: 10.1002/pro.2218.
A conserved surface loop in type I dehydroquinate dehydratases positions an active site arginine and functions in substrate binding.
Light S, Minasov G, Shuvalova L, Peterson S, Caffrey M, Anderson W
Biochemistry. 2011; 50(12):2357-63.
PMID: 21291284
PMC: 3062685.
DOI: 10.1021/bi102020s.
Insights into the mechanism of type I dehydroquinate dehydratases from structures of reaction intermediates.
Light S, Minasov G, Shuvalova L, Duban M, Caffrey M, Anderson W
J Biol Chem. 2010; 286(5):3531-9.
PMID: 21087925
PMC: 3030358.
DOI: 10.1074/jbc.M110.192831.
Evidence from kinetic isotope studies for an enolate intermediate in the mechanism of type II dehydroquinases.
Harris J, Kleanthous C, Hawkins A, Coggins J, ABELL C
Biochem J. 1996; 319 ( Pt 2):333-6.
PMID: 8912664
PMC: 1217773.
DOI: 10.1042/bj3190333.
Comparative analysis of the QUTR transcription repressor protein and the three C-terminal domains of the pentafunctional AROM enzyme.
Lamb H, Moore J, Lakey J, Levett L, Wheeler K, Lago H
Biochem J. 1996; 313 ( Pt 3):941-50.
PMID: 8611179
PMC: 1217002.
DOI: 10.1042/bj3130941.
Characterization of the 3-dehydroquinase domain of the pentafunctional AROM protein, and the quinate dehydrogenase from Aspergillus nidulans, and the overproduction of the type II 3-dehydroquinase from neurospora crassa.
Hawkins A, Moore J, Adeokun A
Biochem J. 1993; 296 ( Pt 2):451-7.
PMID: 8257437
PMC: 1137716.
DOI: 10.1042/bj2960451.
Characterization of the type I dehydroquinase from Salmonella typhi.
Moore J, Hawkins A, Charles I, Deka R, Coggins J, Cooper A
Biochem J. 1993; 295 ( Pt 1):277-85.
PMID: 8216229
PMC: 1134850.
DOI: 10.1042/bj2950277.
Efficient independent activity of a monomeric, monofunctional dehydroquinate synthase derived from the N-terminus of the pentafunctional AROM protein of Aspergillus nidulans.
Moore J, Coggins J, Virden R, Hawkins A
Biochem J. 1994; 301 ( Pt 1):297-304.
PMID: 8037684
PMC: 1137175.
DOI: 10.1042/bj3010297.
The pentafunctional arom enzyme of Saccharomyces cerevisiae is a mosaic of monofunctional domains.
Duncan K, Edwards R, Coggins J
Biochem J. 1987; 246(2):375-86.
PMID: 2825635
PMC: 1148286.
DOI: 10.1042/bj2460375.
The purification and characterization of 3-dehydroquinase from Streptomyces coelicolor.
White P, Young J, Hunter I, Nimmo H, Coggins J
Biochem J. 1990; 265(3):735-8.
PMID: 2306211
PMC: 1133695.
DOI: 10.1042/bj2650735.
Identification of the active-site lysine residues of two biosynthetic 3-dehydroquinases.
Chaudhuri S, Duncan K, Graham L, Coggins J
Biochem J. 1991; 275 ( Pt 1):1-6.
PMID: 1826831
PMC: 1150004.
DOI: 10.1042/bj2750001.
A comparison of the enzymological and biophysical properties of two distinct classes of dehydroquinase enzymes.
Kleanthous C, Deka R, Davis K, Kelly S, Cooper A, Harding S
Biochem J. 1992; 282 ( Pt 3):687-95.
PMID: 1554351
PMC: 1130842.
DOI: 10.1042/bj2820687.