» Articles » PMID: 29448949

A Standardized Framework for Representation of Ancestry Data in Genomics Studies, with Application to the NHGRI-EBI GWAS Catalog

Abstract

The accurate description of ancestry is essential to interpret, access, and integrate human genomics data, and to ensure that these benefit individuals from all ancestral backgrounds. However, there are no established guidelines for the representation of ancestry information. Here we describe a framework for the accurate and standardized description of sample ancestry, and validate it by application to the NHGRI-EBI GWAS Catalog. We confirm known biases and gaps in diversity, and find that African and Hispanic or Latin American ancestry populations contribute a disproportionately high number of associations. It is our hope that widespread adoption of this framework will lead to improved analysis, interpretation, and integration of human genomics data.

Citing Articles

Considerations for building and using integrated single-cell atlases.

Hrovatin K, Sikkema L, Shitov V, Heimberg G, Shulman M, Oliver A Nat Methods. 2024; 22(1):41-57.

PMID: 39672979 DOI: 10.1038/s41592-024-02532-y.


Deficits of Molecular Prognosis/Diagnosis Studies in Underserved Populations.

Medford A, Moy B JCO Oncol Pract. 2024; 20(11):1515-1522.

PMID: 39531843 PMC: 11747936. DOI: 10.1200/OP.24.00131.


The NHGRI-EBI GWAS Catalog: standards for reusability, sustainability and diversity.

Cerezo M, Sollis E, Ji Y, Lewis E, Abid A, Bircan K bioRxiv. 2024; .

PMID: 39484403 PMC: 11526975. DOI: 10.1101/2024.10.23.619767.


Association of the GRIK4 rs1954787 polymorphism with clinical response in antidepressant-treated depressed patients: results from a prospective cohort and meta-analysis.

Chappell K, Colle R, El Asmar K, Gressier F, Bouligand J, Trabado S Mol Psychiatry. 2024; .

PMID: 39462036 DOI: 10.1038/s41380-024-02765-5.


Interactions between Polygenic Risk of Obesity and Dietary Factors on Anthropometric Outcomes: A Systematic Review and Meta-Analysis of Observational Studies.

Han H, Masip G, Meng T, Nielsen D J Nutr. 2024; 154(12):3521-3543.

PMID: 39393497 PMC: 11662244. DOI: 10.1016/j.tjnut.2024.10.014.


References
1.
Adhikari K, Mendoza-Revilla J, Chacon-Duque J, Fuentes-Guajardo M, Ruiz-Linares A . Admixture in Latin America. Curr Opin Genet Dev. 2016; 41:106-114. DOI: 10.1016/j.gde.2016.09.003. View

2.
Auton A, Brooks L, Durbin R, Garrison E, Kang H, Korbel J . A global reference for human genetic variation. Nature. 2015; 526(7571):68-74. PMC: 4750478. DOI: 10.1038/nature15393. View

3.
Asimit J, Hatzikotoulas K, McCarthy M, Morris A, Zeggini E . Trans-ethnic study design approaches for fine-mapping. Eur J Hum Genet. 2016; 24(9):1330-6. PMC: 4856879. DOI: 10.1038/ejhg.2016.1. View

4.
Martinez-Cruz B, Vitalis R, Segurel L, Austerlitz F, Georges M, Thery S . In the heartland of Eurasia: the multilocus genetic landscape of Central Asian populations. Eur J Hum Genet. 2010; 19(2):216-23. PMC: 3025785. DOI: 10.1038/ejhg.2010.153. View

5.
Manrai A, Funke B, Rehm H, S Olesen M, Maron B, Szolovits P . Genetic Misdiagnoses and the Potential for Health Disparities. N Engl J Med. 2016; 375(7):655-65. PMC: 5292722. DOI: 10.1056/NEJMsa1507092. View