» Articles » PMID: 29359086

Time-resolved Near Infrared Light Propagation Using Frequency Domain Superposition

Overview
Specialty Radiology
Date 2018 Jan 24
PMID 29359086
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Time-resolved temporal point spread function (TPSF) measurement of near infrared spectroscopic (NIRS) data allows the estimation of absorption and reduced scattering properties of biological tissues. Such analysis requires an iterative calculation of the theoretical TPSF curve using mathematical and computational models of the domain being imaged which are computationally complex and expensive. In this work, an efficient methodology for representing the TPSF data using a superposition of cosines calculated in frequency domain is presented. The proposed method is outlined and tested on finite element realistic models of the human neck and head. Using an adult head model containing ~140k nodes, the TPSF calculation at each node for one source is accelerated from 3.11 s to 1.29 s within an error limit of ± 5% related to the time domain calculation method.

Citing Articles

Deep learning methods hold promise for light fluence compensation in three-dimensional optoacoustic imaging.

Madasamy A, Gujrati V, Ntziachristos V, Prakash J J Biomed Opt. 2022; 27(10).

PMID: 36209354 PMC: 9547608. DOI: 10.1117/1.JBO.27.10.106004.


Comparison of functional activation responses from the auditory cortex derived using multi-distance frequency domain and continuous wave near-infrared spectroscopy.

Mohammad P, Isarangura S, Eddins A, Parthasarathy A Neurophotonics. 2021; 8(4):045004.

PMID: 34926716 PMC: 8673635. DOI: 10.1117/1.NPh.8.4.045004.


The LUCA device: a multi-modal platform combining diffuse optics and ultrasound imaging for thyroid cancer screening.

Cortese L, Lo Presti G, Zanoletti M, Aranda G, Buttafava M, Contini D Biomed Opt Express. 2021; 12(6):3392-3409.

PMID: 34221667 PMC: 8221941. DOI: 10.1364/BOE.416561.


Cerebral perfusion and blood-brain barrier assessment in brain trauma using contrast-enhanced near-infrared spectroscopy with indocyanine green: A review.

Forcione M, Chiarelli A, Davies D, Perpetuini D, Sawosz P, Merla A J Cereb Blood Flow Metab. 2020; 40(8):1586-1598.

PMID: 32345103 PMC: 7370372. DOI: 10.1177/0271678X20921973.


Self-calibrating time-resolved near infrared spectroscopy.

Wojtkiewicz S, Gerega A, Zanoletti M, Sudakou A, Contini D, Liebert A Biomed Opt Express. 2019; 10(5):2657-2669.

PMID: 31149386 PMC: 6524598. DOI: 10.1364/BOE.10.002657.

References
1.
Jacques S . Optical properties of biological tissues: a review. Phys Med Biol. 2013; 58(11):R37-61. DOI: 10.1088/0031-9155/58/11/R37. View

2.
Durduran T, Choe R, Baker W, Yodh A . Diffuse Optics for Tissue Monitoring and Tomography. Rep Prog Phys. 2015; 73(7). PMC: 4482362. DOI: 10.1088/0034-4885/73/7/076701. View

3.
Guggenheim J, Bargigia I, Farina A, Pifferi A, Dehghani H . Time resolved diffuse optical spectroscopy with geometrically accurate models for bulk parameter recovery. Biomed Opt Express. 2016; 7(9):3784-3794. PMC: 5030049. DOI: 10.1364/BOE.7.003784. View

4.
Binzoni T, Sassaroli A, Torricelli A, Spinelli L, Farina A, Durduran T . Depth sensitivity of frequency domain optical measurements in diffusive media. Biomed Opt Express. 2017; 8(6):2990-3004. PMC: 5480444. DOI: 10.1364/BOE.8.002990. View

5.
Zhu Q, Dehghani H, Tichauer K, Holt R, Vishwanath K, Leblond F . A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media. Phys Med Biol. 2011; 56(23):7419-34. PMC: 3697022. DOI: 10.1088/0031-9155/56/23/006. View