» Articles » PMID: 29297208

Method for Accurate Registration of Tissue Autofluorescence Imaging Data with Corresponding Histology: a Means for Enhanced Tumor Margin Assessment

Overview
Journal J Biomed Opt
Date 2018 Jan 4
PMID 29297208
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

An important step in establishing the diagnostic potential for emerging optical imaging techniques is accurate registration between imaging data and the corresponding tissue histopathology typically used as gold standard in clinical diagnostics. We present a method to precisely register data acquired with a point-scanning spectroscopic imaging technique from fresh surgical tissue specimen blocks with corresponding histological sections. Using a visible aiming beam to augment point-scanning multispectral time-resolved fluorescence spectroscopy on video images, we evaluate two different markers for the registration with histology: fiducial markers using a 405-nm CW laser and the tissue block's outer shape characteristics. We compare the registration performance with benchmark methods using either the fiducial markers or the outer shape characteristics alone to a hybrid method using both feature types. The hybrid method was found to perform best reaching an average error of 0.78±0.67  mm. This method provides a profound framework to validate diagnostical abilities of optical fiber-based techniques and furthermore enables the application of supervised machine learning techniques to automate tissue characterization.

Citing Articles

Method for co-registration of high-resolution specimen PET-CT with histopathology to improve insight into radiotracer distributions.

Maris L, Goker M, Debacker J, De Man K, Van den Broeck B, Van Dorpe J EJNMMI Phys. 2024; 11(1):85.

PMID: 39400788 PMC: 11473743. DOI: 10.1186/s40658-024-00681-9.


Deformable multi-modal image registration for the correlation between optical measurements and histology images.

Feenstra L, Lambregts M, Ruers T, Dashtbozorg B J Biomed Opt. 2024; 29(6):066007.

PMID: 38868496 PMC: 11167953. DOI: 10.1117/1.JBO.29.6.066007.


Point Projection Mapping System for Tracking, Registering, Labeling, and Validating Optical Tissue Measurements.

Feenstra L, van der Stel S, Da Silva Guimaraes M, Dashtbozorg B, Ruers T J Imaging. 2024; 10(2).

PMID: 38392085 PMC: 10890146. DOI: 10.3390/jimaging10020037.


Applications of machine learning in time-domain fluorescence lifetime imaging: a review.

Gouzou D, Taimori A, Haloubi T, Finlayson N, Wang Q, Hopgood J Methods Appl Fluoresc. 2023; 12(2).

PMID: 38055998 PMC: 10851337. DOI: 10.1088/2050-6120/ad12f7.


Generative adversarial network enables rapid and robust fluorescence lifetime image analysis in live cells.

Chen Y, Chang Y, Liao S, Nguyen T, Yang J, Kuo Y Commun Biol. 2022; 5(1):18.

PMID: 35017629 PMC: 8752789. DOI: 10.1038/s42003-021-02938-w.


References
1.
. 1st Scientific Meeting of the Head and Neck Optical Diagnostics Society ,London, UK. 14 March 2009. Abstracts. Head Neck Oncol. 2009; 1 Suppl 1:I1-P32. PMC: 3226248. DOI: 10.1186/1758-3284-1-s1-i1. View

2.
Dhingra J, Perrault Jr D, McMillan K, Rebeiz E, Kabani S, Manoharan R . Early diagnosis of upper aerodigestive tract cancer by autofluorescence. Arch Otolaryngol Head Neck Surg. 1996; 122(11):1181-6. DOI: 10.1001/archotol.1996.01890230029007. View

3.
Chappelow J, Bloch B, Rofsky N, Genega E, Lenkinski R, DeWolf W . Elastic registration of multimodal prostate MRI and histology via multiattribute combined mutual information. Med Phys. 2011; 38(4):2005-18. PMC: 3078156. DOI: 10.1118/1.3560879. View

4.
Haka A, Shafer-Peltier K, Fitzmaurice M, Crowe J, Dasari R, Feld M . Diagnosing breast cancer by using Raman spectroscopy. Proc Natl Acad Sci U S A. 2005; 102(35):12371-6. PMC: 1194905. DOI: 10.1073/pnas.0501390102. View

5.
Hirosawa N, Sakamoto Y, Katayama H, Tonooka S, Yano K . In vivo investigation of progressive alterations in rat mammary gland tumors by near-infrared spectroscopy. Anal Biochem. 2002; 305(2):156-65. DOI: 10.1006/abio.2002.5649. View