» Articles » PMID: 29281622

High-resolution Global Peptide-protein Docking Using Fragments-based PIPER-FlexPepDock

Overview
Specialty Biology
Date 2017 Dec 28
PMID 29281622
Citations 59
Authors
Affiliations
Soon will be listed here.
Abstract

Peptide-protein interactions contribute a significant fraction of the protein-protein interactome. Accurate modeling of these interactions is challenging due to the vast conformational space associated with interactions of highly flexible peptides with large receptor surfaces. To address this challenge we developed a fragment based high-resolution peptide-protein docking protocol. By streamlining the Rosetta fragment picker for accurate peptide fragment ensemble generation, the PIPER docking algorithm for exhaustive fragment-receptor rigid-body docking and Rosetta FlexPepDock for flexible full-atom refinement of PIPER docked models, we successfully addressed the challenge of accurate and efficient global peptide-protein docking at high-resolution with remarkable accuracy, as validated on a small but representative set of peptide-protein complex structures well resolved by X-ray crystallography. Our approach opens up the way to high-resolution modeling of many more peptide-protein interactions and to the detailed study of peptide-protein association in general. PIPER-FlexPepDock is freely available to the academic community as a server at http://piperfpd.furmanlab.cs.huji.ac.il.

Citing Articles

Efficient Refinement of Complex Structures of Flexible Histone Peptides Using Post-Docking Molecular Dynamics Protocols.

Bayarsaikhan B, Zsido B, Borzsei R, Hetenyi C Int J Mol Sci. 2024; 25(11).

PMID: 38892133 PMC: 11172440. DOI: 10.3390/ijms25115945.


Leveraging machine learning models for peptide-protein interaction prediction.

Yin S, Mi X, Shukla D RSC Chem Biol. 2024; 5(5):401-417.

PMID: 38725911 PMC: 11078210. DOI: 10.1039/d3cb00208j.


Peptriever: a Bi-Encoder approach for large-scale protein-peptide binding search.

Gurvich R, Markel G, Tanoli Z, Meirson T Bioinformatics. 2024; 40(5).

PMID: 38710496 PMC: 11112044. DOI: 10.1093/bioinformatics/btae303.


A New Advanced Approach: Design and Screening of Affinity Peptide Ligands Using Computer Simulation Techniques.

Wei Z, Chen M, Lu X, Liu Y, Peng G, Yang J Curr Top Med Chem. 2024; 24(8):667-685.

PMID: 38549525 DOI: 10.2174/0115680266281358240206112605.


Virtual Screening of Peptide Libraries: The Search for Peptide-Based Therapeutics Using Computational Tools.

Vincenzi M, Mercurio F, Leone M Int J Mol Sci. 2024; 25(3).

PMID: 38339078 PMC: 10855943. DOI: 10.3390/ijms25031798.


References
1.
London N, Movshovitz-Attias D, Schueler-Furman O . The structural basis of peptide-protein binding strategies. Structure. 2010; 18(2):188-99. DOI: 10.1016/j.str.2009.11.012. View

2.
de Vries S, Rey J, Schindler C, Zacharias M, Tuffery P . The pepATTRACT web server for blind, large-scale peptide-protein docking. Nucleic Acids Res. 2017; 45(W1):W361-W364. PMC: 5570166. DOI: 10.1093/nar/gkx335. View

3.
Venkatraman V, Yang Y, Sael L, Kihara D . Protein-protein docking using region-based 3D Zernike descriptors. BMC Bioinformatics. 2009; 10:407. PMC: 2800122. DOI: 10.1186/1471-2105-10-407. View

4.
Kurcinski M, Jamroz M, Blaszczyk M, Kolinski A, Kmiecik S . CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Res. 2015; 43(W1):W419-24. PMC: 4489223. DOI: 10.1093/nar/gkv456. View

5.
Berman H, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H . The Protein Data Bank. Nucleic Acids Res. 1999; 28(1):235-42. PMC: 102472. DOI: 10.1093/nar/28.1.235. View