» Articles » PMID: 29250863

Cyclobutanone Mimics of Intermediates in Metallo-β-Lactamase Catalysis

Overview
Journal Chemistry
Specialty Chemistry
Date 2017 Dec 19
PMID 29250863
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

The most important resistance mechanism to β-lactam antibiotics involves hydrolysis by two β-lactamase categories: the nucleophilic serine and the metallo-β-lactamases (SBLs and MBLs, respectively). Cyclobutanones are hydrolytically stable β-lactam analogues with potential to inhibit both SBLs and MBLs. We describe solution and crystallographic studies on the interaction of a cyclobutanone penem analogue with the clinically important MBL SPM-1. NMR experiments using F-labeled SPM-1 imply the cyclobutanone binds to SPM-1 with micromolar affinity. A crystal structure of the SPM-1:cyclobutanone complex reveals binding of the hydrated cyclobutanone through interactions with one of the zinc ions, stabilisation of the hydrate by hydrogen bonding to zinc-bound water, and hydrophobic contacts with aromatic residues. NMR analyses using a C-labeled cyclobutanone support assignment of the bound species as the hydrated ketone. The results inform on how MBLs bind substrates and stabilize tetrahedral intermediates. They support further investigations on the use of transition-state and/or intermediate analogues as inhibitors of all β-lactamase classes.

Citing Articles

Cyclobutanone Inhibitors of Diaminopimelate Desuccinylase (DapE) as Potential New Antibiotics.

Mohammad T, Kelley E, Reidl C, Konczak K, Beulke M, Javier J Int J Mol Sci. 2024; 25(2).

PMID: 38279338 PMC: 10815964. DOI: 10.3390/ijms25021339.


Small-molecule inhibitors of bacterial-producing metallo-β-lactamases: insights into their resistance mechanisms and biochemical analyses of their activities.

Ayipo Y, Chong C, Mordi M RSC Med Chem. 2023; 14(6):1012-1048.

PMID: 37360393 PMC: 10285742. DOI: 10.1039/d3md00036b.


In Silico Binding of 2-Aminocyclobutanones to SARS-CoV-2 Nsp13 Helicase and Demonstration of Antiviral Activity.

Mohammad T, Gupta Y, Reidl C, Nicolaescu V, Gula H, Durvasula R Int J Mol Sci. 2023; 24(6).

PMID: 36982188 PMC: 10049026. DOI: 10.3390/ijms24065120.


Both the mono- and di-anions of ellagic acid are effective inhibitors of the serine β-lactamase CTX-M-15.

Talbot N, Powles N, Page M RSC Adv. 2022; 9(53):30637-30640.

PMID: 35529369 PMC: 9072159. DOI: 10.1039/c9ra05835d.


Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design.

Bahr G, Gonzalez L, Vila A Chem Rev. 2021; 121(13):7957-8094.

PMID: 34129337 PMC: 9062786. DOI: 10.1021/acs.chemrev.1c00138.


References
1.
Walsh T, Toleman M, Poirel L, Nordmann P . Metallo-beta-lactamases: the quiet before the storm?. Clin Microbiol Rev. 2005; 18(2):306-25. PMC: 1082798. DOI: 10.1128/CMR.18.2.306-325.2005. View

2.
Hopkins K, Meunier D, Findlay J, Mustafa N, Parsons H, Pike R . SPM-1 metallo-β-lactamase-producing Pseudomonas aeruginosa ST277 in the UK. J Med Microbiol. 2016; 65(7):696-697. DOI: 10.1099/jmm.0.000269. View

3.
Toussaint K, Gallagher J . β-lactam/β-lactamase inhibitor combinations: from then to now. Ann Pharmacother. 2014; 49(1):86-98. DOI: 10.1177/1060028014556652. View

4.
Huestis W, RAFTERY M . Bromotrifluoroacetone alkylates hemoglobin at cysteine beta93. Biochem Biophys Res Commun. 1978; 81(3):892-9. DOI: 10.1016/0006-291x(78)91435-3. View

5.
Karsisiotis A, Damblon C, Roberts G . A variety of roles for versatile zinc in metallo-β-lactamases. Metallomics. 2014; 6(7):1181-97. DOI: 10.1039/c4mt00066h. View