» Articles » PMID: 29250562

Probabilistic Simulation Framework for EEG-Based BCI Design

Overview
Date 2017 Dec 19
PMID 29250562
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

A simulation framework could decrease the burden of attending long and tiring experimental sessions on the potential users of brain computer interface (BCI) systems. Specifically during the initial design of a BCI, a simulation framework that could replicate the operational performance of the system would be a useful tool for designers to make design choices. In this manuscript, we develop a Monte Carlo based probabilistic simulation framework for electroencephalography (EEG) based BCI design. We employ one event related potential (ERP) based typing and one steady state evoked potential (SSVEP) based control interface as testbeds. We compare the results of simulations with real time experiments. Even though over and under estimation of the performance is possible, the statistical results over the Monte Carlo simulations show that the developed framework generally provides a good approximation of the real time system performance.

Citing Articles

Feedback Related Potentials for EEG-Based Typing Systems.

Gonzalez-Navarro P, Celik B, Moghadamfalahi M, Akcakaya M, Fried-Oken M, Erdogmus D Front Hum Neurosci. 2022; 15:788258.

PMID: 35145386 PMC: 8821166. DOI: 10.3389/fnhum.2021.788258.


On Analysis of Active Querying for Recursive State Estimation.

Kocanaogullari A, Akcakay M, Erdogmus D IEEE Signal Process Lett. 2019; 25(6):743-747.

PMID: 31871396 PMC: 6927333. DOI: 10.1109/LSP.2018.2823271.


An Active RBSE Framework to Generate Optimal Stimulus Sequences in a BCI for Spelling.

Moghadamfalahi M, Akcakaya M, Nezamfar H, Sourati J, Erdogmus D IEEE Trans Signal Process. 2019; 65(20):5381-5392.

PMID: 31871392 PMC: 6927477. DOI: 10.1109/TSP.2017.2728500.


Optimal Query Selection Using Multi-Armed Bandits.

Kocanaogullari A, Marghi Y, Akcakaya M, Erdogmus D IEEE Signal Process Lett. 2019; 25(12):1870-1874.

PMID: 31588169 PMC: 6777547. DOI: 10.1109/LSP.2018.2878066.


An Event-Driven AR-Process Model for EEG-Based BCIs With Rapid Trial Sequences.

Gonzalez-Navarro P, Marghi Y, Azari B, Akcakaya M, Erdogmus D IEEE Trans Neural Syst Rehabil Eng. 2019; 27(5):798-804.

PMID: 30869624 PMC: 6629584. DOI: 10.1109/TNSRE.2019.2903840.

References
1.
Orhan U, Erdogmus D, Roark B, Purwar S, Hild 2nd K, Oken B . Fusion with language models improves spelling accuracy for ERP-based brain computer interface spellers. Annu Int Conf IEEE Eng Med Biol Soc. 2012; 2011:5774-7. PMC: 3775645. DOI: 10.1109/IEMBS.2011.6091429. View

2.
Ryan D, Frye G, Townsend G, Berry D, Mesa-G S, Gates N . Predictive spelling with a P300-based brain-computer interface: Increasing the rate of communication. Int J Hum Comput Interact. 2011; 27(1):69-84. PMC: 3029027. DOI: 10.1080/10447318.2011.535754. View

3.
Akcakaya M, Peters B, Moghadamfalahi M, Mooney A, Orhan U, Oken B . Noninvasive brain-computer interfaces for augmentative and alternative communication. IEEE Rev Biomed Eng. 2014; 7:31-49. PMC: 6525622. DOI: 10.1109/RBME.2013.2295097. View

4.
Townsend G, Shanahan J, Ryan D, Sellers E . A general P300 brain-computer interface presentation paradigm based on performance guided constraints. Neurosci Lett. 2012; 531(2):63-8. PMC: 3646331. DOI: 10.1016/j.neulet.2012.08.041. View

5.
Treder M, Schmidt N, Blankertz B . Gaze-independent brain-computer interfaces based on covert attention and feature attention. J Neural Eng. 2011; 8(6):066003. DOI: 10.1088/1741-2560/8/6/066003. View