» Articles » PMID: 29212789

Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men

Overview
Journal Physiol Rev
Specialty Physiology
Date 2017 Dec 8
PMID 29212789
Citations 318
Authors
Affiliations
Soon will be listed here.
Abstract

The pancreatic β-cell plays a key role in glucose homeostasis by secreting insulin, the only hormone capable of lowering the blood glucose concentration. Impaired insulin secretion results in the chronic hyperglycemia that characterizes type 2 diabetes (T2DM), which currently afflicts >450 million people worldwide. The healthy β-cell acts as a glucose sensor matching its output to the circulating glucose concentration. It does so via metabolically induced changes in electrical activity, which culminate in an increase in the cytoplasmic Ca concentration and initiation of Ca-dependent exocytosis of insulin-containing secretory granules. Here, we review recent advances in our understanding of the β-cell transcriptome, electrical activity, and insulin exocytosis. We highlight salient differences between mouse and human β-cells, provide models of how the different ion channels contribute to their electrical activity and insulin secretion, and conclude by discussing how these processes become perturbed in T2DM.

Citing Articles

Impact of the Microtubule Cytoskeleton on Insulin Transport in Beta Cells: A 3D Computational Study.

Thieu T, Holmes W bioRxiv. 2025; .

PMID: 39990414 PMC: 11844541. DOI: 10.1101/2025.02.12.637971.


Extracellular matrix proteins refine microenvironments for pancreatic organogenesis from induced pluripotent stem cell differentiation.

Hu M, Liu T, Huang H, Ogi D, Tan Y, Ye K Theranostics. 2025; 15(6):2229-2249.

PMID: 39990212 PMC: 11840725. DOI: 10.7150/thno.104883.


Type 3 diabetes and metabolic reprogramming of brain neurons: causes and therapeutic strategies.

Meng X, Zhang H, Zhao Z, Li S, Zhang X, Guo R Mol Med. 2025; 31(1):61.

PMID: 39966707 PMC: 11834690. DOI: 10.1186/s10020-025-01101-z.


Identifying insulin-responsive circRNAs in chicken pectoralis.

Shao B, Wang Z, Luo P, Du P, Zhang X, Zhang H BMC Genomics. 2025; 26(1):148.

PMID: 39955508 PMC: 11830218. DOI: 10.1186/s12864-025-11347-w.


Single-cell decoding of human islet cell type-specific alterations in type 2 diabetes reveals converging genetic- and state-driven -cell gene expression defects.

Bandesh K, Motakis E, Nargund S, Kursawe R, Selvam V, Bhuiyan R bioRxiv. 2025; .

PMID: 39896672 PMC: 11785113. DOI: 10.1101/2025.01.17.633590.


References
1.
Kulkarni R, Bruning J, Winnay J, Postic C, Magnuson M, Kahn C . Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell. 1999; 96(3):329-39. DOI: 10.1016/s0092-8674(00)80546-2. View

2.
Gall D, Gromada J, Susa I, Rorsman P, Herchuelz A, Bokvist K . Significance of Na/Ca exchange for Ca2+ buffering and electrical activity in mouse pancreatic beta-cells. Biophys J. 1999; 76(4):2018-28. PMC: 1300176. DOI: 10.1016/S0006-3495(99)77359-5. View

3.
Zerangue N, Schwappach B, Jan Y, Jan L . A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron. 1999; 22(3):537-48. DOI: 10.1016/s0896-6273(00)80708-4. View

4.
Peterson B, DeMaria C, Adelman J, Yue D . Calmodulin is the Ca2+ sensor for Ca2+ -dependent inactivation of L-type calcium channels. Neuron. 1999; 22(3):549-58. DOI: 10.1016/s0896-6273(00)80709-6. View

5.
Jonas J, Sharma A, Hasenkamp W, Ilkova H, Patane G, Laybutt R . Chronic hyperglycemia triggers loss of pancreatic beta cell differentiation in an animal model of diabetes. J Biol Chem. 1999; 274(20):14112-21. DOI: 10.1074/jbc.274.20.14112. View