» Articles » PMID: 29168792

Zinc Signal in Brain Diseases

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2017 Nov 24
PMID 29168792
Citations 61
Authors
Affiliations
Soon will be listed here.
Abstract

The divalent cation zinc is an integral requirement for optimal cellular processes, whereby it contributes to the function of over 300 enzymes, regulates intracellular signal transduction, and contributes to efficient synaptic transmission in the central nervous system. Given the critical role of zinc in a breadth of cellular processes, its cellular distribution and local tissue level concentrations remain tightly regulated via a series of proteins, primarily including zinc transporter and zinc import proteins. A loss of function of these regulatory pathways, or dietary alterations that result in a change in zinc homeostasis in the brain, can all lead to a myriad of pathological conditions with both acute and chronic effects on function. This review aims to highlight the role of zinc signaling in the central nervous system, where it may precipitate or potentiate diverse issues such as age-related cognitive decline, depression, Alzheimer's disease or negative outcomes following brain injury.

Citing Articles

Evaluation of combined workflows for multimodal mass spectrometry imaging of elements and lipids from the same tissue section.

Sarretto T, Westerhausen M, Mckinnon J, Bishop D, Ellis S Anal Bioanal Chem. 2025; 417(4):705-719.

PMID: 39831956 PMC: 11772510. DOI: 10.1007/s00216-024-05696-w.


A Copper-Binding Peptide with Therapeutic Potential against Alzheimer's Disease: From the Blood-Brain Barrier to Metal Competition.

Lopez-Guerrero V, Posadas Y, Sanchez-Lopez C, Smart A, Miranda J, Singewald K ACS Chem Neurosci. 2024; 16(2):241-261.

PMID: 39723808 PMC: 11741003. DOI: 10.1021/acschemneuro.4c00796.


Zinc and its binding proteins: essential roles and therapeutic potential.

Kiouri D, Chasapis C, Mavromoustakos T, Spiliopoulou C, Stefanidou M Arch Toxicol. 2024; 99(1):23-41.

PMID: 39508885 DOI: 10.1007/s00204-024-03891-3.


Metal ions overloading and cell death.

Lai Y, Gao F, Ge R, Liu R, Ma S, Liu X Cell Biol Toxicol. 2024; 40(1):72.

PMID: 39162885 PMC: 11335907. DOI: 10.1007/s10565-024-09910-4.


Determination of metal ion transport rate of human ZIP4 using stable zinc isotopes.

Jiang Y, MacRenaris K, OHalloran T, Hu J J Biol Chem. 2024; 300(9):107661.

PMID: 39128710 PMC: 11630640. DOI: 10.1016/j.jbc.2024.107661.


References
1.
Maynard C, Bush A, Masters C, Cappai R, Li Q . Metals and amyloid-beta in Alzheimer's disease. Int J Exp Pathol. 2005; 86(3):147-59. PMC: 2517409. DOI: 10.1111/j.0959-9673.2005.00434.x. View

2.
Andrasi E, Farkas E, Gawlik D, Rosick U, Bratter P . Brain Iron and Zinc Contents of German Patients with Alzheimer Disease. J Alzheimers Dis. 2002; 2(1):17-26. DOI: 10.3233/jad-2000-2103. View

3.
Clements A, Allsop D, Walsh D, Williams C . Aggregation and metal-binding properties of mutant forms of the amyloid A beta peptide of Alzheimer's disease. J Neurochem. 1996; 66(2):740-7. DOI: 10.1046/j.1471-4159.1996.66020740.x. View

4.
Paoletti P, Vergnano A, Barbour B, Casado M . Zinc at glutamatergic synapses. Neuroscience. 2008; 158(1):126-36. DOI: 10.1016/j.neuroscience.2008.01.061. View

5.
Tsunemi T, Krainc D . Zn²⁺ dyshomeostasis caused by loss of ATP13A2/PARK9 leads to lysosomal dysfunction and alpha-synuclein accumulation. Hum Mol Genet. 2013; 23(11):2791-801. PMC: 4014186. DOI: 10.1093/hmg/ddt572. View