» Articles » PMID: 38180597

Upregulation of Intracellular Zinc Ion Level After Differentiation of the Neural Stem/Progenitor Cells In Vitro with the Changes in Gene Expression of Zinc Transporters

Overview
Date 2024 Jan 5
PMID 38180597
Authors
Affiliations
Soon will be listed here.
Abstract

We measured the intracellular zinc ion concentration of murine fetal neural stem/progenitor cells (NSPCs) and that in the differentiated cells. The NSPCs cultured with 1.5 μM Zn proliferated slightly faster than that in the zinc-deficient medium and the intracellular zinc concentration of the NSPCs and that of their differentiated cells (DCs) cultured with 1.5 μM Zn was 1.34-fold and 2.00-fold higher than those in the zinc-deficient medium, respectively. The zinc transporter genes upregulated over the 3.5-fold change were Zip1, Zip4, Zip12, Zip13, ZnT1, ZnT8, and ZnT10 whereas the only downregulated one was Zip8 during the differentiation of NSPCs to DCs. The cell morphologies of both NSPCs and DCs in the low oxygen culture condition consisting of 2%O and 5%CO, the high carbon dioxide condition consisting of 21%O and 10%CO, and the normal condition consisting of 21%O and 5%CO were essentially the same each other. The expression of Zip4, Zip8, Zip12, and Zip14 was not drastically changed depending on the O and CO concentrations.

Citing Articles

Unlocking the brain's zinc code: implications for cognitive function and disease.

Sabouri S, Rostamirad M, Dempski R Front Biophys. 2025; 2.

PMID: 39758530 PMC: 11698502. DOI: 10.3389/frbis.2024.1406868.

References
1.
Ross M, Hernandez-Espinosa D, Aizenman E . Neurodevelopmental Consequences of Dietary Zinc Deficiency: A Status Report. Biol Trace Elem Res. 2023; 201(12):5616-5639. DOI: 10.1007/s12011-023-03630-2. View

2.
Marger L, Schubert C, Bertrand D . Zinc: an underappreciated modulatory factor of brain function. Biochem Pharmacol. 2014; 91(4):426-35. DOI: 10.1016/j.bcp.2014.08.002. View

3.
Krall R, Tzounopoulos T, Aizenman E . The Function and Regulation of Zinc in the Brain. Neuroscience. 2021; 457:235-258. PMC: 7897305. DOI: 10.1016/j.neuroscience.2021.01.010. View

4.
Willekens J, Runnels L . Impact of Zinc Transport Mechanisms on Embryonic and Brain Development. Nutrients. 2022; 14(12). PMC: 9231024. DOI: 10.3390/nu14122526. View

5.
Kumar V, Kumar A, Singh K, Avasthi K, Kim J . Neurobiology of zinc and its role in neurogenesis. Eur J Nutr. 2021; 60(1):55-64. DOI: 10.1007/s00394-020-02454-3. View