» Articles » PMID: 29146772

Cre-dependent Cas9-expressing Pigs Enable Efficient in Vivo Genome Editing

Abstract

Despite being time-consuming and costly, generating genome-edited pigs holds great promise for agricultural, biomedical, and pharmaceutical applications. To further facilitate genome editing in pigs, we report here establishment of a pig line with Cre-inducible Cas9 expression that allows a variety of ex vivo genome editing in fibroblast cells including single- and multigene modifications, chromosome rearrangements, and efficient in vivo genetic modifications. As a proof of principle, we were able to simultaneously inactivate five tumor suppressor genes (, , , , and ) and activate one oncogene (), achieved by delivering Cre recombinase and sgRNAs, which caused rapid lung tumor development. The efficient genome editing shown here demonstrates that these pigs can serve as a powerful tool for dissecting in vivo gene functions and biological processes in a temporal manner and for streamlining the production of genome-edited pigs for disease modeling.

Citing Articles

gene editing using primary cells derived from Cas9-expressing pigs.

Kim S, No J, Lee S, Choi A, Hyung N, Lee J J Anim Sci Technol. 2025; 67(1):179-192.

PMID: 39974782 PMC: 11833195. DOI: 10.5187/jast.2024.e77.


Functional integration of Cas9 gene into the genome of rhesus monkey: possibility of a new biomedical model?.

Wang Y, Wu J, Wang X, Kang Y, Chu C, Zeng Y Life Med. 2025; 2(1):lnad002.

PMID: 39872955 PMC: 11749692. DOI: 10.1093/lifemedi/lnad002.


Genome editing: An insight into disease resistance, production efficiency, and biomedical applications in livestock.

Yuan Y, Liu S, Farhab M, Lv M, Zhang T, Cao S Funct Integr Genomics. 2024; 24(3):81.

PMID: 38709433 DOI: 10.1007/s10142-024-01364-5.


Pigs: Large Animal Preclinical Cancer Models.

Joshi K, Katam T, Hegde A, Cheng J, Prather R, Whitworth K World J Oncol. 2024; 15(2):149-168.

PMID: 38545477 PMC: 10965265. DOI: 10.14740/wjon1763.


Genetically modified pigs: Emerging animal models for hereditary hearing loss.

Wang X, Liu T, Zhang Y, Xu L, Yuan S, Cui A Zool Res. 2024; 45(2):284-291.

PMID: 38485498 PMC: 11017082. DOI: 10.24272/j.issn.2095-8137.2023.231.


References
1.
Lai S, Wei S, Zhao B, Ouyang Z, Zhang Q, Fan N . Generation of Knock-In Pigs Carrying Oct4-tdTomato Reporter through CRISPR/Cas9-Mediated Genome Engineering. PLoS One. 2016; 11(1):e0146562. PMC: 4710570. DOI: 10.1371/journal.pone.0146562. View

2.
Shen B, Zhang J, Wu H, Wang J, Ma K, Li Z . Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res. 2013; 23(5):720-3. PMC: 3641603. DOI: 10.1038/cr.2013.46. View

3.
Nelson C, Hakim C, Ousterout D, Thakore P, Moreb E, Castellanos Rivera R . In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2016; 351(6271):403-7. PMC: 4883596. DOI: 10.1126/science.aad5143. View

4.
Wan H, Feng C, Teng F, Yang S, Hu B, Niu Y . One-step generation of p53 gene biallelic mutant Cynomolgus monkey via the CRISPR/Cas system. Cell Res. 2014; 25(2):258-61. PMC: 4650568. DOI: 10.1038/cr.2014.158. View

5.
Jiang W, Bikard D, Cox D, Zhang F, Marraffini L . RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol. 2013; 31(3):233-9. PMC: 3748948. DOI: 10.1038/nbt.2508. View