» Articles » PMID: 26721684

In Vivo Genome Editing Improves Muscle Function in a Mouse Model of Duchenne Muscular Dystrophy

Abstract

Duchenne muscular dystrophy (DMD) is a devastating disease affecting about 1 out of 5000 male births and caused by mutations in the dystrophin gene. Genome editing has the potential to restore expression of a modified dystrophin gene from the native locus to modulate disease progression. In this study, adeno-associated virus was used to deliver the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system to the mdx mouse model of DMD to remove the mutated exon 23 from the dystrophin gene. This includes local and systemic delivery to adult mice and systemic delivery to neonatal mice. Exon 23 deletion by CRISPR-Cas9 resulted in expression of the modified dystrophin gene, partial recovery of functional dystrophin protein in skeletal myofibers and cardiac muscle, improvement of muscle biochemistry, and significant enhancement of muscle force. This work establishes CRISPR-Cas9-based genome editing as a potential therapy to treat DMD.

Citing Articles

Development and Validation of AAV-Mediated Liver, Liver-VAT, and Liver-Brain SORT and Therapeutic Regulation of FASN in Hepatic De Novo Lipogenesis.

Bhadury R, Athar M, Mishra P, Gogoi C, Sharma S, Ghorpade D Cells. 2025; 14(5).

PMID: 40072100 PMC: 11899426. DOI: 10.3390/cells14050372.


Advanced delivery systems for gene editing: A comprehensive review from the GenE-HumDi COST Action Working Group.

Cavazza A, Molina-Estevez F, Plaza Reyes A, Ronco V, Naseem A, Malensek S Mol Ther Nucleic Acids. 2025; 36(1):102457.

PMID: 39991472 PMC: 11847086. DOI: 10.1016/j.omtn.2025.102457.


Treating neuromuscular diseases: unveiling gene therapy breakthroughs and pioneering future applications.

Wu Y, Chen J, Jong Y J Biomed Sci. 2025; 32(1):30.

PMID: 39985020 PMC: 11844187. DOI: 10.1186/s12929-025-01123-z.


gene editing using primary cells derived from Cas9-expressing pigs.

Kim S, No J, Lee S, Choi A, Hyung N, Lee J J Anim Sci Technol. 2025; 67(1):179-192.

PMID: 39974782 PMC: 11833195. DOI: 10.5187/jast.2024.e77.


Gene therapy for genetic diseases: challenges and future directions.

Qie B, Tuo J, Chen F, Ding H, Lyu L MedComm (2020). 2025; 6(2):e70091.

PMID: 39949979 PMC: 11822459. DOI: 10.1002/mco2.70091.


References
1.
Wang D, Mou H, Li S, Li Y, Hough S, Tran K . Adenovirus-Mediated Somatic Genome Editing of Pten by CRISPR/Cas9 in Mouse Liver in Spite of Cas9-Specific Immune Responses. Hum Gene Ther. 2015; 26(7):432-42. PMC: 4509492. DOI: 10.1089/hum.2015.087. View

2.
Ran F, Cong L, Yan W, Scott D, Gootenberg J, Kriz A . In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015; 520(7546):186-91. PMC: 4393360. DOI: 10.1038/nature14299. View

3.
Goyenvalle A, Griffith G, Babbs A, El Andaloussi S, Ezzat K, Avril A . Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Nat Med. 2015; 21(3):270-5. DOI: 10.1038/nm.3765. View

4.
Ousterout D, Kabadi A, Thakore P, Perez-Pinera P, Brown M, Majoros W . Correction of dystrophin expression in cells from Duchenne muscular dystrophy patients through genomic excision of exon 51 by zinc finger nucleases. Mol Ther. 2014; 23(3):523-32. PMC: 4351462. DOI: 10.1038/mt.2014.234. View

5.
Ousterout D, Kabadi A, Thakore P, Majoros W, Reddy T, Gersbach C . Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun. 2015; 6:6244. PMC: 4335351. DOI: 10.1038/ncomms7244. View