» Articles » PMID: 29130152

Combining Engineered Nucleases with Adeno-associated Viral Vectors for Therapeutic Gene Editing

Overview
Date 2017 Nov 14
PMID 29130152
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

With the recent advent of several generations of targeted DNA nucleases, most recently CRISPR/Cas9, genome editing has become broadly accessible across the biomedical community. Importantly, the capacity of these nucleases to modify specific genomic loci associated with human disease could render new classes of genetic disease, including autosomal dominant or even idiopathic disease, accessible to gene therapy. In parallel, the emergence of adeno-associated virus (AAV) as a clinically important vector raises the possibility of integrating these two technologies towards the development of gene editing therapies. Though clear challenges exist, numerous proof-of-concept studies in preclinical models offer exciting promise for the future of gene therapy.

Citing Articles

Efforts to Downsize Base Editors for Clinical Applications.

Song B Int J Mol Sci. 2025; 26(5).

PMID: 40076976 PMC: 11900391. DOI: 10.3390/ijms26052357.


Advanced delivery systems for gene editing: A comprehensive review from the GenE-HumDi COST Action Working Group.

Cavazza A, Molina-Estevez F, Plaza Reyes A, Ronco V, Naseem A, Malensek S Mol Ther Nucleic Acids. 2025; 36(1):102457.

PMID: 39991472 PMC: 11847086. DOI: 10.1016/j.omtn.2025.102457.


Beyond the promise: evaluating and mitigating off-target effects in CRISPR gene editing for safer therapeutics.

Lopes R, Prasad M Front Bioeng Biotechnol. 2024; 11:1339189.

PMID: 38390600 PMC: 10883050. DOI: 10.3389/fbioe.2023.1339189.


Efficient DNA knock-in using AAV-mediated delivery with 2-cell embryo CRISPR-Cas9 electroporation.

Davis D, McNew J, Maresca-Fichter H, Chen K, Telugu B, Bryda E Front Genome Ed. 2023; 5:1256451.

PMID: 37694158 PMC: 10485772. DOI: 10.3389/fgeed.2023.1256451.


The Role of Recombinant AAV in Precise Genome Editing.

Bijlani S, Pang K, Sivanandam V, Singh A, Chatterjee S Front Genome Ed. 2022; 3:799722.

PMID: 35098210 PMC: 8793687. DOI: 10.3389/fgeed.2021.799722.


References
1.
Xie F, Ye L, Chang J, Beyer A, Wang J, Muench M . Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 2014; 24(9):1526-33. PMC: 4158758. DOI: 10.1101/gr.173427.114. View

2.
Wang J, Exline C, DeClercq J, Llewellyn G, Hayward S, Li P . Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat Biotechnol. 2015; 33(12):1256-1263. PMC: 4842001. DOI: 10.1038/nbt.3408. View

3.
Tsai S, Joung J . Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Nat Rev Genet. 2016; 17(5):300-12. PMC: 7225572. DOI: 10.1038/nrg.2016.28. View

4.
Greenberg B, Butler J, Felker G, Ponikowski P, Voors A, Desai A . Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial. Lancet. 2016; 387(10024):1178-86. DOI: 10.1016/S0140-6736(16)00082-9. View

5.
Dong J, Fan P, Frizzell R . Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum Gene Ther. 1996; 7(17):2101-12. DOI: 10.1089/hum.1996.7.17-2101. View