» Articles » PMID: 28985510

High-Throughput Approaches to Pinpoint Function Within the Noncoding Genome

Overview
Journal Mol Cell
Publisher Cell Press
Specialty Cell Biology
Date 2017 Oct 7
PMID 28985510
Citations 39
Authors
Affiliations
Soon will be listed here.
Abstract

The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas nuclease system is a powerful tool for genome editing, and its simple programmability has enabled high-throughput genetic and epigenetic studies. These high-throughput approaches offer investigators a toolkit for functional interrogation of not only protein-coding genes but also noncoding DNA. Historically, noncoding DNA has lacked the detailed characterization that has been applied to protein-coding genes in large part because there has not been a robust set of methodologies for perturbing these regions. Although the majority of high-throughput CRISPR screens have focused on the coding genome to date, an increasing number of CRISPR screens targeting noncoding genomic regions continue to emerge. Here, we review high-throughput CRISPR-based approaches to uncover and understand functional elements within the noncoding genome and discuss practical aspects of noncoding library design and screen analysis.

Citing Articles

Activation of the imprinted Prader-Willi syndrome locus by CRISPR-based epigenome editing.

Rohm D, Black J, McCutcheon S, Barrera A, Berry S, Morone D Cell Genom. 2025; 5(2):100770.

PMID: 39947136 PMC: 11872474. DOI: 10.1016/j.xgen.2025.100770.


Functional RNA mining using random high-throughput screening.

Liu L, Chen J, Lai S, Zhao X, Yang M, Wu Y Nucleic Acids Res. 2024; 53(2.

PMID: 39673274 PMC: 11754670. DOI: 10.1093/nar/gkae1173.


Targeting DLBCL by mutation-specific disruption of cancer-driving oncogenes.

Heshmatpour N, Kazemi S, Schmidt N, Patnaik S, Korus P, Wilkens B Front Genome Ed. 2024; 6:1427322.

PMID: 39469218 PMC: 11513324. DOI: 10.3389/fgeed.2024.1427322.


Discovering the hidden function in fungal genomes.

Gervais N, Shapiro R Nat Commun. 2024; 15(1):8219.

PMID: 39300175 PMC: 11413187. DOI: 10.1038/s41467-024-52568-z.


Activation of the imprinted Prader-Willi Syndrome locus by CRISPR-based epigenome editing.

Rohm D, Black J, McCutcheon S, Barrera A, Morone D, Nuttle X bioRxiv. 2024; .

PMID: 38496583 PMC: 10942373. DOI: 10.1101/2024.03.03.583177.


References
1.
Manguso R, Pope H, Zimmer M, Brown F, Yates K, Miller B . In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature. 2017; 547(7664):413-418. PMC: 5924693. DOI: 10.1038/nature23270. View

2.
Guo H, Zhu P, Wu X, Li X, Wen L, Tang F . Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 2013; 23(12):2126-35. PMC: 3847781. DOI: 10.1101/gr.161679.113. View

3.
Korkmaz G, Lopes R, Ugalde A, Nevedomskaya E, Han R, Myacheva K . Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nat Biotechnol. 2016; 34(2):192-8. DOI: 10.1038/nbt.3450. View

4.
Morgan S, Mariano N, Bermudez A, Arruda N, Wu F, Luo Y . Manipulation of nuclear architecture through CRISPR-mediated chromosomal looping. Nat Commun. 2017; 8:15993. PMC: 5511349. DOI: 10.1038/ncomms15993. View

5.
Wang K, Chang H . Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011; 43(6):904-14. PMC: 3199020. DOI: 10.1016/j.molcel.2011.08.018. View