» Articles » PMID: 28953884

Genome Editing Reveals a Role for OCT4 in Human Embryogenesis

Abstract

Despite their fundamental biological and clinical importance, the molecular mechanisms that regulate the first cell fate decisions in the human embryo are not well understood. Here we use CRISPR-Cas9-mediated genome editing to investigate the function of the pluripotency transcription factor OCT4 during human embryogenesis. We identified an efficient OCT4-targeting guide RNA using an inducible human embryonic stem cell-based system and microinjection of mouse zygotes. Using these refined methods, we efficiently and specifically targeted the gene encoding OCT4 (POU5F1) in diploid human zygotes and found that blastocyst development was compromised. Transcriptomics analysis revealed that, in POU5F1-null cells, gene expression was downregulated not only for extra-embryonic trophectoderm genes, such as CDX2, but also for regulators of the pluripotent epiblast, including NANOG. By contrast, Pou5f1-null mouse embryos maintained the expression of orthologous genes, and blastocyst development was established, but maintenance was compromised. We conclude that CRISPR-Cas9-mediated genome editing is a powerful method for investigating gene function in the context of human development.

Citing Articles

Emerging cooperativity between Oct4 and Sox2 governs the pluripotency network in early mouse embryos.

Hou Y, Nie Z, Jiang Q, Velychko S, Heising S, Bedzhov I Elife. 2025; 13.

PMID: 40014376 PMC: 11867617. DOI: 10.7554/eLife.100735.


Establishment of a CRISPR-Based Lentiviral Activation Library for Transcription Factor Screening in Porcine Cells.

Liang Y, Yao X, Han J, Wang J, Zhang X, Zhao D Animals (Basel). 2025; 15(1.

PMID: 39794961 PMC: 11718943. DOI: 10.3390/ani15010019.


Divergent destinies: insights into the molecular mechanisms underlying EPI and PE fate determination.

Athanasouli P, Vanhessche T, Lluis F Life Sci Alliance. 2025; 8(3).

PMID: 39779220 PMC: 11711469. DOI: 10.26508/lsa.202403091.


Parallel genome-scale CRISPR-Cas9 screens uncouple human pluripotent stem cell identity versus fitness.

Rosen B, Li Q, Cho H, Liu D, Yang D, Graff S Nat Commun. 2024; 15(1):8966.

PMID: 39419994 PMC: 11487130. DOI: 10.1038/s41467-024-53284-4.


Early human development and stem cell-based human embryo models.

Shahbazi M, Pasque V Cell Stem Cell. 2024; 31(10):1398-1418.

PMID: 39366361 PMC: 7617107. DOI: 10.1016/j.stem.2024.09.002.


References
1.
Guell M, Yang L, Church G . Genome editing assessment using CRISPR Genome Analyzer (CRISPR-GA). Bioinformatics. 2014; 30(20):2968-70. PMC: 4184265. DOI: 10.1093/bioinformatics/btu427. View

2.
Capmany G, Taylor A, Braude P, Bolton V . The timing of pronuclear formation, DNA synthesis and cleavage in the human 1-cell embryo. Mol Hum Reprod. 1996; 2(5):299-306. DOI: 10.1093/molehr/2.5.299. View

3.
Chen A, Egli D, Niakan K, Deng J, Akutsu H, Yamaki M . Optimal timing of inner cell mass isolation increases the efficiency of human embryonic stem cell derivation and allows generation of sibling cell lines. Cell Stem Cell. 2009; 4(2):103-6. PMC: 3335201. DOI: 10.1016/j.stem.2008.12.001. View

4.
Hsu P, Scott D, Weinstein J, Ran F, Konermann S, Agarwala V . DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013; 31(9):827-32. PMC: 3969858. DOI: 10.1038/nbt.2647. View

5.
Fragouli E, Alfarawati S, Spath K, Babariya D, Tarozzi N, Borini A . Analysis of implantation and ongoing pregnancy rates following the transfer of mosaic diploid-aneuploid blastocysts. Hum Genet. 2017; 136(7):805-819. DOI: 10.1007/s00439-017-1797-4. View