» Articles » PMID: 28934254

Deep Reconstruction Model for Dynamic PET Images

Overview
Journal PLoS One
Date 2017 Sep 22
PMID 28934254
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

Accurate and robust tomographic reconstruction from dynamic positron emission tomography (PET) acquired data is a difficult problem. Conventional methods, such as the maximum likelihood expectation maximization (MLEM) algorithm for reconstructing the activity distribution-based on individual frames, may lead to inaccurate results due to the checkerboard effect and limitation of photon counts. In this paper, we propose a stacked sparse auto-encoder based reconstruction framework for dynamic PET imaging. The dynamic reconstruction problem is formulated in a deep learning representation, where the encoding layers extract the prototype features, such as edges, so that, in the decoding layers, the reconstructed results are obtained through a combination of those features. The qualitative and quantitative results of the procedure, including the data based on a Monte Carlo simulation and real patient data demonstrates the effectiveness of our method.

Citing Articles

Monte Carlo methods for medical imaging research.

Lee H Biomed Eng Lett. 2024; 14(6):1195-1205.

PMID: 39465109 PMC: 11502642. DOI: 10.1007/s13534-024-00423-x.


Machine Learning in PET: from Photon Detection to Quantitative Image Reconstruction.

Gong K, Eric Berg , Cherry S, Qi J Proc IEEE Inst Electr Electron Eng. 2023; 108(1):51-68.

PMID: 38045770 PMC: 10691821. DOI: 10.1109/JPROC.2019.2936809.


Dose reduction in dynamic synaptic vesicle glycoprotein 2A PET imaging using artificial neural networks.

Li A, Yang B, Naganawa M, Fontaine K, Toyonaga T, Carson R Phys Med Biol. 2023; 68(24).

PMID: 37857316 PMC: 10739622. DOI: 10.1088/1361-6560/ad0535.


Review and Prospect: Artificial Intelligence in Advanced Medical Imaging.

Wang S, Cao G, Wang Y, Liao S, Wang Q, Shi J Front Radiol. 2023; 1:781868.

PMID: 37492170 PMC: 10365109. DOI: 10.3389/fradi.2021.781868.


Multimodality Advanced Cardiovascular and Molecular Imaging for Early Detection and Monitoring of Cancer Therapy-Associated Cardiotoxicity and the Role of Artificial Intelligence and Big Data.

Kwan J, Oikonomou E, Henry M, Sinusas A Front Cardiovasc Med. 2022; 9:829553.

PMID: 35369354 PMC: 8964995. DOI: 10.3389/fcvm.2022.829553.


References
1.
Rahmim A, Tang J, Zaidi H . Four-dimensional (4D) image reconstruction strategies in dynamic PET: beyond conventional independent frame reconstruction. Med Phys. 2009; 36(8):3654-70. DOI: 10.1118/1.3160108. View

2.
Jan S, Santin G, Strul D, Staelens S, Assie K, Autret D . GATE: a simulation toolkit for PET and SPECT. Phys Med Biol. 2004; 49(19):4543-61. PMC: 3267383. DOI: 10.1088/0031-9155/49/19/007. View

3.
Hinton G, Salakhutdinov R . Reducing the dimensionality of data with neural networks. Science. 2006; 313(5786):504-7. DOI: 10.1126/science.1127647. View

4.
Shepp L, Vardi Y . Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging. 1982; 1(2):113-22. DOI: 10.1109/TMI.1982.4307558. View

5.
Rahmim A, Cheng J, Blinder S, Camborde M, Sossi V . Statistical dynamic image reconstruction in state-of-the-art high-resolution PET. Phys Med Biol. 2005; 50(20):4887-912. DOI: 10.1088/0031-9155/50/20/010. View