» Articles » PMID: 34191161

Applications of Artificial Intelligence and Deep Learning in Molecular Imaging and Radiotherapy

Overview
Date 2021 Jun 30
PMID 34191161
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

This brief review summarizes the major applications of artificial intelligence (AI), in particular deep learning approaches, in molecular imaging and radiation therapy research. To this end, the applications of artificial intelligence in five generic fields of molecular imaging and radiation therapy, including PET instrumentation design, PET image reconstruction quantification and segmentation, image denoising (low-dose imaging), radiation dosimetry and computer-aided diagnosis, and outcome prediction are discussed. This review sets out to cover briefly the fundamental concepts of AI and deep learning followed by a presentation of seminal achievements and the challenges facing their adoption in clinical setting.

Citing Articles

Advancements in Artificial Intelligence in Noninvasive Cardiac Imaging: A Comprehensive Review.

Tolu-Akinnawo O, Ezekwueme F, Omolayo O, Batheja S, Awoyemi T Clin Cardiol. 2025; 48(1):e70087.

PMID: 39871619 PMC: 11772728. DOI: 10.1002/clc.70087.


Enhancing Lymphoma Diagnosis, Treatment, and Follow-Up Using F-FDG PET/CT Imaging: Contribution of Artificial Intelligence and Radiomics Analysis.

Hasanabadi S, Aghamiri S, Abin A, Abdollahi H, Arabi H, Zaidi H Cancers (Basel). 2024; 16(20).

PMID: 39456604 PMC: 11505665. DOI: 10.3390/cancers16203511.


Joint Brain Tumor Segmentation from Multi-magnetic Resonance Sequences through a Deep Convolutional Neural Network.

Dehghani F, Karimian A, Arabi H J Med Signals Sens. 2024; 14:9.

PMID: 38993203 PMC: 11111160. DOI: 10.4103/jmss.jmss_13_23.


Deep learning-based partial volume correction in standard and low-dose positron emission tomography-computed tomography imaging.

Azimi M, Kamali-Asl A, Ay M, Zeraatkar N, Hosseini M, Sanaat A Quant Imaging Med Surg. 2024; 14(3):2146-2164.

PMID: 38545051 PMC: 10963814. DOI: 10.21037/qims-23-871.


Automated segmentation of lesions and organs at risk on [Ga]Ga-PSMA-11 PET/CT images using self-supervised learning with Swin UNETR.

Yazdani E, Karamzadeh-Ziarati N, Cheshmi S, Sadeghi M, Geramifar P, Vosoughi H Cancer Imaging. 2024; 24(1):30.

PMID: 38424612 PMC: 10903052. DOI: 10.1186/s40644-024-00675-x.


References
1.
Gong K, Catana C, Qi J, Li Q . PET Image Reconstruction Using Deep Image Prior. IEEE Trans Med Imaging. 2018; 38(7):1655-1665. PMC: 6584077. DOI: 10.1109/TMI.2018.2888491. View

2.
Gao M, Bagci U, Lu L, Wu A, Buty M, Shin H . Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks. Comput Methods Biomech Biomed Eng Imaging Vis. 2018; 6(1):1-6. PMC: 5881940. DOI: 10.1080/21681163.2015.1124249. View

3.
Chen L, Bentley P, Mori K, Misawa K, Fujiwara M, Rueckert D . Self-supervised learning for medical image analysis using image context restoration. Med Image Anal. 2019; 58:101539. PMC: 7613987. DOI: 10.1016/j.media.2019.101539. View

4.
Maspero M, Savenije M, Dinkla A, Seevinck P, Intven M, Jurgenliemk-Schulz I . Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy. Phys Med Biol. 2018; 63(18):185001. DOI: 10.1088/1361-6560/aada6d. View

5.
Wang Y, Zhou L, Yu B, Wang L, Zu C, Lalush D . 3D Auto-Context-Based Locality Adaptive Multi-Modality GANs for PET Synthesis. IEEE Trans Med Imaging. 2018; 38(6):1328-1339. PMC: 6541547. DOI: 10.1109/TMI.2018.2884053. View