» Articles » PMID: 28916813

Genome Sequencing Reveals Metabolic and Cellular Interdependence in an Amoeba-kinetoplastid Symbiosis

Abstract

Endosymbiotic relationships between eukaryotic and prokaryotic cells are common in nature. Endosymbioses between two eukaryotes are also known; cyanobacterium-derived plastids have spread horizontally when one eukaryote assimilated another. A unique instance of a non-photosynthetic, eukaryotic endosymbiont involves members of the genus Paramoeba, amoebozoans that infect marine animals such as farmed fish and sea urchins. Paramoeba species harbor endosymbionts belonging to the Kinetoplastea, a diverse group of flagellate protists including some that cause devastating diseases. To elucidate the nature of this eukaryote-eukaryote association, we sequenced the genomes and transcriptomes of Paramoeba pemaquidensis and its endosymbiont Perkinsela sp. The endosymbiont nuclear genome is ~9.5 Mbp in size, the smallest of a kinetoplastid thus far discovered. Genomic analyses show that Perkinsela sp. has lost the ability to make a flagellum but retains hallmark features of kinetoplastid biology, including polycistronic transcription, trans-splicing, and a glycosome-like organelle. Mosaic biochemical pathways suggest extensive 'cross-talk' between the two organisms, and electron microscopy shows that the endosymbiont ingests amoeba cytoplasm, a novel form of endosymbiont-host communication. Our data reveal the cell biological and biochemical basis of the obligate relationship between Perkinsela sp. and its amoeba host, and provide a foundation for understanding pathogenicity determinants in economically important Paramoeba.

Citing Articles

Comprehensive analysis of the Kinetoplastea intron landscape reveals a novel intron-containing gene and the first exclusively trans-splicing eukaryote.

Kostygov A, Skypalova K, Kraeva N, Kalita E, McLeod C, Yurchenko V BMC Biol. 2024; 22(1):281.

PMID: 39627879 PMC: 11613528. DOI: 10.1186/s12915-024-02080-z.


A lineage-specific protein network at the trypanosome nuclear envelope.

Butterfield E, Obado S, Scutts S, Zhang W, Chait B, Rout M Nucleus. 2024; 15(1):2310452.

PMID: 38605598 PMC: 11018031. DOI: 10.1080/19491034.2024.2310452.


Characterization of two novel proteins involved in mitochondrial DNA anchoring in Trypanosoma brucei.

Amodeo S, Bregy I, Hoffmann A, Fradera-Sola A, Kern M, Baudouin H PLoS Pathog. 2023; 19(7):e1011486.

PMID: 37459364 PMC: 10374059. DOI: 10.1371/journal.ppat.1011486.


Divergent polo boxes in KKT2 bind KKT1 to initiate the kinetochore assembly cascade in .

Ishii M, Ludzia P, Marciano G, Allen W, Nerusheva O, Akiyoshi B Mol Biol Cell. 2022; 33(14):ar143.

PMID: 36129769 PMC: 9727816. DOI: 10.1091/mbc.E22-07-0269-T.


Old genes in new places: A taxon-rich analysis of interdomain lateral gene transfer events.

Cote-LHeureux A, Maurer-Alcala X, Katz L PLoS Genet. 2022; 18(6):e1010239.

PMID: 35731825 PMC: 9255765. DOI: 10.1371/journal.pgen.1010239.


References
1.
Stamatakis A . RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006; 22(21):2688-90. DOI: 10.1093/bioinformatics/btl446. View

2.
Peacock L, Ferris V, Sharma R, Sunter J, Bailey M, Carrington M . Identification of the meiotic life cycle stage of Trypanosoma brucei in the tsetse fly. Proc Natl Acad Sci U S A. 2011; 108(9):3671-6. PMC: 3048101. DOI: 10.1073/pnas.1019423108. View

3.
Cenci U, Moog D, Curtis B, Tanifuji G, Eme L, Lukes J . Heme pathway evolution in kinetoplastid protists. BMC Evol Biol. 2016; 16(1):109. PMC: 4870792. DOI: 10.1186/s12862-016-0664-6. View

4.
Tanifuji G, Kim E, Onodera N, Gibeault R, Dlutek M, Cawthorn R . Genomic characterization of Neoparamoeba pemaquidensis (Amoebozoa) and its kinetoplastid endosymbiont. Eukaryot Cell. 2011; 10(8):1143-6. PMC: 3165438. DOI: 10.1128/EC.05027-11. View

5.
Capella-Gutierrez S, Silla-Martinez J, Gabaldon T . trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009; 25(15):1972-3. PMC: 2712344. DOI: 10.1093/bioinformatics/btp348. View