» Articles » PMID: 28856036

Optical Coherence Tomography Angiography of Retinal Vascular Occlusions Produced by Imaging-guided Laser Photocoagulation

Overview
Specialty Radiology
Date 2017 Sep 1
PMID 28856036
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Retinal vascular occlusive diseases represent a major form of vision loss worldwide. Rodent models of these diseases have traditionally relied upon a slit-lamp biomicroscope to help visualize the fundus and subsequently aid delivery of high-power laser shots to a target vessel. Here we describe a multimodal imaging system that can produce, image, and monitor retinal vascular occlusions in rodents. The system combines a spectral-domain optical coherence tomography system for cross-sectional structural imaging and three-dimensional angiography, and a fluorescence scanning laser ophthalmoscope for Rose Bengal monitoring and high-power laser delivery to a target vessel. This multimodal system facilitates the precise production of occlusions in the branched retinal veins, central retinal vein, and branched retinal arteries. Additionally, changes in the retinal morphology and retinal vasculature can be longitudinally documented. With our device, retinal vascular occlusions can be easily and consistently created, which paves the way for futures studies on their pathophysiology and therapeutic targets.

Citing Articles

Longitudinal imaging of vitreal hyperreflective foci in mice with acute optic nerve damage using visible-light optical coherence tomography.

Fan W, Miller D, Chang S, Kweon J, Yeo W, Grannonico M Opt Lett. 2024; 49(8):1880-1883.

PMID: 38621029 PMC: 11217911. DOI: 10.1364/OL.512029.


Renally Clearable Ultraminiature Chain-Like Gold Nanoparticle Clusters for Multimodal Molecular Imaging of Choroidal Neovascularization.

Nguyen V, Qian W, Zhe J, Henry J, Wang M, Liu B Adv Mater. 2023; 35(31):e2302069.

PMID: 37285214 PMC: 10509731. DOI: 10.1002/adma.202302069.


MURIN: Multimodal Retinal Imaging and Navigated-laser-delivery for dynamic and longitudinal tracking of photodamage in murine models.

Rico-Jimenez J, Jovanovic J, Nolen S, Malone J, Rao G, Levine E Front Ophthalmol (Lausanne). 2023; 3.

PMID: 37275441 PMC: 10238074. DOI: 10.3389/fopht.2023.1141070.


Advances in multimodal imaging in ophthalmology.

Ringel M, Tang E, Tao Y Ther Adv Ophthalmol. 2022; 13:25158414211002400.

PMID: 35187398 PMC: 8855415. DOI: 10.1177/25158414211002400.


Vascular morphology and blood flow signatures for differential artery-vein analysis in optical coherence tomography of the retina.

Kim T, Le D, Son T, Yao X Biomed Opt Express. 2021; 12(1):367-379.

PMID: 33520388 PMC: 7818960. DOI: 10.1364/BOE.413149.


References
1.
Rosen R, Hathaway M, Rogers J, Pedro J, Garcia P, Dobre G . Simultaneous OCT/SLO/ICG imaging. Invest Ophthalmol Vis Sci. 2008; 50(2):851-60. DOI: 10.1167/iovs.08-1855. View

2.
Gong Y, Li J, Sun Y, Fu Z, Liu C, Evans L . Optimization of an Image-Guided Laser-Induced Choroidal Neovascularization Model in Mice. PLoS One. 2015; 10(7):e0132643. PMC: 4498645. DOI: 10.1371/journal.pone.0132643. View

3.
Giannakaki-Zimmermann H, Kokona D, Wolf S, Ebneter A, Zinkernagel M . Optical Coherence Tomography Angiography in Mice: Comparison with Confocal Scanning Laser Microscopy and Fluorescein Angiography. Transl Vis Sci Technol. 2016; 5(4):11. PMC: 4997887. DOI: 10.1167/tvst.5.4.11. View

4.
Paques M, Tadayoni R, Sercombe R, Laurent P, Genevois O, Gaudric A . Structural and hemodynamic analysis of the mouse retinal microcirculation. Invest Ophthalmol Vis Sci. 2003; 44(11):4960-7. DOI: 10.1167/iovs.02-0738. View

5.
Royster A, Nanda S, Hatchell D, Tiedeman J, Dutton J, Hatchell M . Photochemical initiation of thrombosis. Fluorescein angiographic, histologic, and ultrastructural alterations in the choroid, retinal pigment epithelium, and retina. Arch Ophthalmol. 1988; 106(11):1608-14. DOI: 10.1001/archopht.1988.01060140776054. View