» Articles » PMID: 28813417

CMTM6 Maintains the Expression of PD-L1 and Regulates Anti-tumour Immunity

Abstract

Cancer cells exploit the expression of the programmed death-1 (PD-1) ligand 1 (PD-L1) to subvert T-cell-mediated immunosurveillance. The success of therapies that disrupt PD-L1-mediated tumour tolerance has highlighted the need to understand the molecular regulation of PD-L1 expression. Here we identify the uncharacterized protein CMTM6 as a critical regulator of PD-L1 in a broad range of cancer cells, by using a genome-wide CRISPR-Cas9 screen. CMTM6 is a ubiquitously expressed protein that binds PD-L1 and maintains its cell surface expression. CMTM6 is not required for PD-L1 maturation but co-localizes with PD-L1 at the plasma membrane and in recycling endosomes, where it prevents PD-L1 from being targeted for lysosome-mediated degradation. Using a quantitative approach to profile the entire plasma membrane proteome, we find that CMTM6 displays specificity for PD-L1. Notably, CMTM6 depletion decreases PD-L1 without compromising cell surface expression of MHC class I. CMTM6 depletion, via the reduction of PD-L1, significantly alleviates the suppression of tumour-specific T cell activity in vitro and in vivo. These findings provide insights into the biology of PD-L1 regulation, identify a previously unrecognized master regulator of this critical immune checkpoint and highlight a potential therapeutic target to overcome immune evasion by tumour cells.

Citing Articles

Post-translational modifications of immune checkpoints: unlocking new potentials in cancer immunotherapy.

Hu Q, Shi Y, Wang H, Bing L, Xu Z Exp Hematol Oncol. 2025; 14(1):37.

PMID: 40087690 DOI: 10.1186/s40164-025-00627-6.


Alterations in PD-L1 succinylation shape anti-tumor immune responses in melanoma.

Liang L, Kuang X, He Y, Zhu L, Lau P, Li X Nat Genet. 2025; 57(3):680-693.

PMID: 40069506 PMC: 11906371. DOI: 10.1038/s41588-025-02077-6.


EndoMAP.v1, a Structural Protein Complex Landscape of Human Endosomes.

Gonzalez-Lozano M, Schmid E, Whelan E, Jiang Y, Paulo J, Walter J bioRxiv. 2025; .

PMID: 39975243 PMC: 11839024. DOI: 10.1101/2025.02.07.636106.


pH-dependent dissociation from CTLA-4 in early endosomes improves both safety and antitumor activity of anti-CTLA-4 antibodies.

Zhang M, Li J, Yan K, Zhou H, Mei S, Wang B Proc Natl Acad Sci U S A. 2025; 122(8):e2422731122.

PMID: 39964714 PMC: 11874271. DOI: 10.1073/pnas.2422731122.


Modulation of tumor inflammatory signaling and drug sensitivity by CMTM4.

Xu Y, Kang K, Coakley B, Eisenstein S, Parveen A, Mai S EMBO J. 2025; .

PMID: 39948411 DOI: 10.1038/s44318-024-00330-y.


References
1.
Green M, Monti S, Rodig S, Juszczynski P, Currie T, ODonnell E . Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010; 116(17):3268-77. PMC: 2995356. DOI: 10.1182/blood-2010-05-282780. View

2.
Tumeh P, Harview C, Yearley J, Shintaku I, Taylor E, Robert L . PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014; 515(7528):568-71. PMC: 4246418. DOI: 10.1038/nature13954. View

3.
Mahoney K, Rennert P, Freeman G . Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov. 2015; 14(8):561-84. DOI: 10.1038/nrd4591. View

4.
Moreno B, Parisi G, Robert L, Ribas A . Anti-PD-1 therapy in melanoma. Semin Oncol. 2015; 42(3):466-73. DOI: 10.1053/j.seminoncol.2015.02.008. View

5.
Boussiotis V . Molecular and Biochemical Aspects of the PD-1 Checkpoint Pathway. N Engl J Med. 2016; 375(18):1767-1778. PMC: 5575761. DOI: 10.1056/NEJMra1514296. View