» Articles » PMID: 28770257

Nanoparticle-Based Receptors Mimic Protein-Ligand Recognition

Overview
Journal Chem
Publisher Elsevier
Date 2017 Aug 4
PMID 28770257
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

The self-assembly of a monolayer of ligands on the surface of noble-metal nanoparticles dictates the fundamental nanoparticle's behavior and its functionality. In this combined computational-experimental study, we analyze the structure, organization, and dynamics of functionalized coating thiols in monolayer-protected gold nanoparticles (AuNPs). We explain how functionalized coating thiols self-organize through a delicate and somehow counterintuitive balance of interactions within the monolayer itself and with the solvent. We further describe how the nature and plasticity of these interactions modulate nanoparticle-based chemosensing. Importantly, we found that self-organization of coating thiols can induce the formation of binding pockets in AuNPs. These transient cavities can accommodate small molecules, mimicking protein-ligand recognition, which could explain the selectivity and sensitivity observed for different organic analytes in NMR chemosensing experiments. Thus, our findings advocate for the rational design of tailored coating groups to form specific recognition binding sites on monolayer-protected AuNPs.

Citing Articles

Molecular Mechanisms Underlying Detection Sensitivity in Nanoparticle-Assisted NMR Chemosensing.

Franco-Ulloa S, Cesari A, Riccardi L, De Biasi F, Rosa-Gastaldo D, Mancin F J Phys Chem Lett. 2023; 14(30):6912-6918.

PMID: 37498189 PMC: 10405269. DOI: 10.1021/acs.jpclett.3c01005.


NanoModeler CG: A Tool for Modeling and Engineering Functional Nanoparticles at a Coarse-Grained Resolution.

Franco-Ulloa S, Riccardi L, Rimembrana F, Grottin E, Pini M, De Vivo M J Chem Theory Comput. 2023; 19(5):1582-1591.

PMID: 36795071 PMC: 10018737. DOI: 10.1021/acs.jctc.2c01029.


Specific and nondisruptive interaction of guanidium-functionalized gold nanoparticles with neutral phospholipid bilayers.

Morillas-Becerril L, Franco-Ulloa S, Fortunati I, Marotta R, Sun X, Zanoni G Commun Chem. 2023; 4(1):93.

PMID: 36697571 PMC: 9814519. DOI: 10.1038/s42004-021-00526-x.


Fluorescent Sensing of Glutathione and Related Bio-Applications.

Sun X, Guo F, Ye Q, Zhou J, Han J, Guo R Biosensors (Basel). 2023; 13(1).

PMID: 36671851 PMC: 9855688. DOI: 10.3390/bios13010016.


Spotting Local Environments in Self-Assembled Monolayer-Protected Gold Nanoparticles.

Gabellini C, Sologan M, Pellizzoni E, Marson D, Daka M, Franchi P ACS Nano. 2022; 16(12):20902-20914.

PMID: 36459668 PMC: 9798909. DOI: 10.1021/acsnano.2c08467.


References
1.
Kim C, Ghosh P, Pagliuca C, Zhu Z, Menichetti S, Rotello V . Entrapment of hydrophobic drugs in nanoparticle monolayers with efficient release into cancer cells. J Am Chem Soc. 2009; 131(4):1360-1. PMC: 2645269. DOI: 10.1021/ja808137c. View

2.
Gentilini C, Franchi P, Mileo E, Polizzi S, Lucarini M, Pasquato L . Formation of patches on 3D SAMs driven by thiols with immiscible chains observed by ESR spectroscopy. Angew Chem Int Ed Engl. 2009; 48(17):3060-4. DOI: 10.1002/anie.200805321. View

3.
Conde J, Dias J, Grazu V, Moros M, Baptista P, de la Fuente J . Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front Chem. 2014; 2:48. PMC: 4097105. DOI: 10.3389/fchem.2014.00048. View

4.
Perrone B, Springhetti S, Ramadori F, Rastrelli F, Mancin F . "NMR chemosensing" using monolayer-protected nanoparticles as receptors. J Am Chem Soc. 2013; 135(32):11768-71. DOI: 10.1021/ja406688a. View

5.
Su S, Zuo X, Pan D, Pei H, Wang L, Fan C . Design and applications of gold nanoparticle conjugates by exploiting biomolecule-gold nanoparticle interactions. Nanoscale. 2013; 5(7):2589-99. DOI: 10.1039/c3nr33870c. View