» Articles » PMID: 28741941

Efficient Delivery of Quantum Dots into the Cytosol of Cells Using Cell-Penetrating Poly(disulfide)s

Overview
Journal J Am Chem Soc
Specialty Chemistry
Date 2017 Jul 26
PMID 28741941
Citations 34
Authors
Affiliations
Soon will be listed here.
Abstract

Quantum dots (QDs) are extremely bright, photostable, nanometer particles broadly used to investigate single molecule dynamics in vitro. However, the use of QDs in vivo to investigate single molecule dynamics is impaired by the absence of an efficient way to chemically deliver them into the cytosol of cells. Indeed, current methods (using cell-penetrating peptides for instance) provide very low yields: QDs stay at the plasma membrane or are trapped in endosomes. Here, we introduce a technology based on cell-penetrating poly(disulfide)s that solves this problem: we deliver about 70 QDs per cell, and 90% appear to freely diffuse in the cytosol. Furthermore, these QDs can be functionalized, carrying GFP or anti-GFP nanobodies for instance. Our technology thus paves the way toward single molecule imaging in cells and living animals, allowing to probe biophysical properties of the cytosol.

Citing Articles

Synthesis of a dendritic cell-targeted self-assembled polymeric nanoparticle for selective delivery of mRNA vaccines to elicit enhanced immune responses.

Fan C, Wang S, Chung C, Chen J, Chang C, Chen Y Chem Sci. 2024; 15(29):11626-11632.

PMID: 39055027 PMC: 11268467. DOI: 10.1039/d3sc06575h.


Inclusive Pattern Generation Protocols to Decode Thiol-Mediated Uptake.

Saidjalolov S, Coelho F, Mercier V, Moreau D, Matile S ACS Cent Sci. 2024; 10(5):1033-1043.

PMID: 38799667 PMC: 11117725. DOI: 10.1021/acscentsci.3c01601.


Cytotoxicity of Quantum Dots in Receptor-Mediated Endocytic and Pinocytic Pathways in Yeast.

Okafor O, Kim K Int J Mol Sci. 2024; 25(9).

PMID: 38731933 PMC: 11083673. DOI: 10.3390/ijms25094714.


Dual-responsive nanocarriers for efficient cytosolic protein delivery and CRISPR-Cas9 gene therapy of inflammatory skin disorders.

Tan E, Wan T, Pan Q, Duan J, Zhang S, Wang R Sci Adv. 2024; 10(16):eadl4336.

PMID: 38630829 PMC: 11023524. DOI: 10.1126/sciadv.adl4336.


Application of Nanoparticles in Cancer Treatment: A Concise Review.

Sell M, Lopes A, Escudeiro M, Esteves B, Monteiro A, Trindade T Nanomaterials (Basel). 2023; 13(21).

PMID: 37947732 PMC: 10650201. DOI: 10.3390/nano13212887.


References
1.
Chuard N, Gasparini G, Moreau D, Lorcher S, Palivan C, Meier W . Strain-Promoted Thiol-Mediated Cellular Uptake of Giant Substrates: Liposomes and Polymersomes. Angew Chem Int Ed Engl. 2017; 56(11):2947-2950. DOI: 10.1002/anie.201611772. View

2.
Li M, Schlesiger S, Knauer S, Schmuck C . A tailor-made specific anion-binding motif in the side chain transforms a tetrapeptide into an efficient vector for gene delivery. Angew Chem Int Ed Engl. 2015; 54(10):2941-4. DOI: 10.1002/anie.201410429. View

3.
Soppina V, Verhey K . The family-specific K-loop influences the microtubule on-rate but not the superprocessivity of kinesin-3 motors. Mol Biol Cell. 2014; 25(14):2161-70. PMC: 4091829. DOI: 10.1091/mbc.E14-01-0696. View

4.
Gasparini G, Matile S . Protein delivery with cell-penetrating poly(disulfide)s. Chem Commun (Camb). 2015; 51(96):17160-2. DOI: 10.1039/c5cc07460f. View

5.
Herce H, Garcia A, Cardoso M . Fundamental molecular mechanism for the cellular uptake of guanidinium-rich molecules. J Am Chem Soc. 2014; 136(50):17459-67. PMC: 4277769. DOI: 10.1021/ja507790z. View