» Articles » PMID: 25405895

Fundamental Molecular Mechanism for the Cellular Uptake of Guanidinium-rich Molecules

Overview
Journal J Am Chem Soc
Specialty Chemistry
Date 2014 Nov 19
PMID 25405895
Citations 61
Authors
Affiliations
Soon will be listed here.
Abstract

Guanidinium-rich molecules, such as cell-penetrating peptides, efficiently enter living cells in a non-endocytic energy-independent manner and transport a wide range of cargos, including drugs and biomarkers. The mechanism by which these highly cationic molecules efficiently cross the hydrophobic barrier imposed by the plasma membrane remains a fundamental open question. Here, a combination of computational results and in vitro and live-cell experimental evidence reveals an efficient energy-independent translocation mechanism for arginine-rich molecules. This mechanism unveils the essential role of guanidinium groups and two universal cell components: fatty acids and the cell membrane pH gradient. Deprotonated fatty acids in contact with the cell exterior interact with guanidinium groups, leading to a transient membrane channel that facilitates the transport of arginine-rich peptides toward the cell interior. On the cytosolic side, the fatty acids become protonated, releasing the peptides and resealing the channel. This fundamental mechanism appears to be universal across cells from different species and kingdoms.

Citing Articles

-Sulfonatocalix[4]arene turns peptide aggregates into an efficient cell-penetrating peptide.

Heydari M, Salehi N, Zadmard R, Nau W, Khajeh K, Azizi Z RSC Adv. 2024; 14(44):32460-32470.

PMID: 39411252 PMC: 11474258. DOI: 10.1039/d4ra06124a.


Cell-penetrating peptides TAT and 8R functionalize P22 virus-like particles to enhance tissue distribution and retention .

Su S, Shen X, Shi X, Li X, Chen J, Yang W Front Vet Sci. 2024; 11:1460973.

PMID: 39290505 PMC: 11405305. DOI: 10.3389/fvets.2024.1460973.


Antimicrobial-loaded biodegradable nanoemulsions for efficient clearance of intracellular pathogens in bacterial peritonitis.

Makabenta J, Nabawy A, Chattopadhyay A, Park J, Li C, Goswami R Biomaterials. 2023; 302:122344.

PMID: 37857021 PMC: 10872928. DOI: 10.1016/j.biomaterials.2023.122344.


Molecular Dynamics Simulations of Drug-Conjugated Cell-Penetrating Peptides.

Ivanczi M, Balogh B, Kis L, Mandity I Pharmaceuticals (Basel). 2023; 16(9).

PMID: 37765059 PMC: 10535489. DOI: 10.3390/ph16091251.


Recent Progress of Rational Modified Nanocarriers for Cytosolic Protein Delivery.

He X, Xiong S, Sun Y, Zhong M, Xiao N, Zhou Z Pharmaceutics. 2023; 15(6).

PMID: 37376059 PMC: 10301687. DOI: 10.3390/pharmaceutics15061610.


References
1.
Walrant A, Bechara C, Alves I, Sagan S . Molecular partners for interaction and cell internalization of cell-penetrating peptides: how identical are they?. Nanomedicine (Lond). 2011; 7(1):133-43. DOI: 10.2217/nnm.11.165. View

2.
Tunnemann G, Ter-Avetisyan G, Martin R, Stockl M, Herrmann A, Cardoso M . Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. J Pept Sci. 2007; 14(4):469-76. DOI: 10.1002/psc.968. View

3.
Saalik P, Niinep A, Pae J, Hansen M, Lubenets D, Langel U . Penetration without cells: membrane translocation of cell-penetrating peptides in the model giant plasma membrane vesicles. J Control Release. 2011; 153(2):117-25. DOI: 10.1016/j.jconrel.2011.03.011. View

4.
Salentinig S, Sagalowicz L, Glatter O . Self-assembled structures and pKa value of oleic acid in systems of biological relevance. Langmuir. 2010; 26(14):11670-9. DOI: 10.1021/la101012a. View

5.
Martin P, Moncada M, Enrique N, Asuaje A, Valdez Capuccino J, Gonzalez C . Arachidonic acid activation of BKCa (Slo1) channels associated to the β1-subunit in human vascular smooth muscle cells. Pflugers Arch. 2013; 466(9):1779-92. DOI: 10.1007/s00424-013-1422-x. View