» Articles » PMID: 28717577

Temporal Multiplexing to Simulate Multifocal Intraocular Lenses: Theoretical Considerations

Overview
Specialty Radiology
Date 2017 Jul 19
PMID 28717577
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Fast tunable lenses allow an effective design of a portable simultaneous vision simulator (SimVis) of multifocal corrections. A novel method of evaluating the temporal profile of a tunable lens in simulating different multifocal intraocular lenses (M-IOLs) is presented. The proposed method involves the characteristic fitting of the through-focus (TF) optical quality of the multifocal component of a given M-IOL to a linear combination of TF optical quality of monofocal lenses viable with a tunable lens. Three different types of M-IOL designs are tested, namely: segmented refractive, diffractive and refractive extended depth of focus. The metric used for the optical evaluation of the temporal profile is the visual Strehl (VS) ratio. It is shown that the time profiles generated with the VS ratio as a metric in SimVis resulted in TF VS ratio and TF simulated images that closely matched the TF VS ratio and TF simulated images predicted with the M-IOL. The effects of temporal sampling, varying pupil size, monochromatic aberrations, longitudinal chromatic aberrations and temporal dynamics on SimVis are discussed.

Citing Articles

Perceptual cost and benefit of presbyopia-correcting intraocular lenses: effect of energy balance, addition, and adaptation.

Esteban-Ibanez E, Gambra E, Marrakchi Y, Sawides L, Dorronsoro C Biomed Opt Express. 2025; 16(2):849-871.

PMID: 39958868 PMC: 11828464. DOI: 10.1364/BOE.543908.


Pre-clinical methods to evaluate photic phenomena in intraocular lenses.

Jenkins M, Alarcon A, Faria Ribeiro M, Rosen R, Vilupuru S, van der Mooren M Biomed Opt Express. 2024; 15(12):6989-6998.

PMID: 39679401 PMC: 11640559. DOI: 10.1364/BOE.541022.


Visual simulation of intraocular lenses: from on-bench performance to computational and experimental validations.

Papadogiannis P, Gambra E, Labuz G, Yan W, Martin-Becerra D, Siso-Fuertes I Biomed Opt Express. 2024; 15(11):6521-6530.

PMID: 39553883 PMC: 11563315. DOI: 10.1364/BOE.538878.


Simulation of daily soft multifocal contact lenses using SimVis Gekko: from in-vitro and computational characterization to clinical validation.

Esteban-Ibanez E, Montagud-Martinez D, Sawides L, Zaytouny A, de Castro A, Siso-Fuertes I Sci Rep. 2024; 14(1):8592.

PMID: 38615153 PMC: 11016090. DOI: 10.1038/s41598-024-59178-1.


Experimental characterization, modelling and compensation of temperature effects in optotunable lenses.

Marrakchi Y, Barcala X, Gambra E, Martinez-Ibarburu I, Dorronsoro C, Sawides L Sci Rep. 2023; 13(1):1575.

PMID: 36709218 PMC: 9884192. DOI: 10.1038/s41598-023-28795-7.


References
1.
Gatinel D, Houbrechts Y . Comparison of bifocal and trifocal diffractive and refractive intraocular lenses using an optical bench. J Cataract Refract Surg. 2013; 39(7):1093-9. DOI: 10.1016/j.jcrs.2013.01.048. View

2.
Howarth P, Bradley A . The longitudinal chromatic aberration of the human eye, and its correction. Vision Res. 1986; 26(2):361-6. DOI: 10.1016/0042-6989(86)90034-9. View

3.
Akondi V, Vohnsen B . Myopic aberrations: impact of centroiding noise in Hartmann Shack wavefront sensing. Ophthalmic Physiol Opt. 2013; 33(4):434-43. DOI: 10.1111/opo.12076. View

4.
De Gracia P, Dorronsoro C, Sanchez-Gonzalez A, Sawides L, Marcos S . Experimental simulation of simultaneous vision. Invest Ophthalmol Vis Sci. 2012; 54(1):415-22. DOI: 10.1167/iovs.12-11219. View

5.
Schwiegerling J . Statistical generation of normal and post-refractive surgery wavefronts. Clin Exp Optom. 2009; 92(3):223-6. DOI: 10.1111/j.1444-0938.2009.00379.x. View