» Articles » PMID: 30733540

Visual Simulators Replicate Vision with Multifocal Lenses

Overview
Journal Sci Rep
Specialty Science
Date 2019 Feb 9
PMID 30733540
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Adaptive optics (AO) visual simulators based on deformable mirrors, spatial light modulators or optotunable lenses are increasingly used to simulate vision through different multifocal lens designs. However, the correspondence of this simulation with that obtained through real intraocular lenses (IOLs) tested on the same eyes has not been, to our knowledge, demonstrated. We compare through-focus (TF) optical and visual quality produced by real multifocal IOLs (M-IOLs) -bifocal refractive and trifocal diffractive- projected on the subiect's eye with those same designs simulated with a spatial light modulator (SLM) or an optotunable lens working in temporal multiplexing mode (SimVis technology). Measurements were performed on 7 cyclopleged subjects using a custom-made multichannel 3-active-optical-elements polychromatic AO Visual Simulator in monochromatic light. The same system was used to demonstrate performance of the real IOLs, SLM and SimVis technology simulations on bench using double-pass imaging on an artificial eye. Results show a general good correspondence between the TF performance with the real and simulated M-IOLs, both optically (on bench) and visually (measured visual acuity in patients). We demonstrate that visual simulations in an AO environment capture to a large extent the individual optical and visual performance obtained with real M-IOLs, both in absolute values and in the shape of through-focus curves.

Citing Articles

Perceptual cost and benefit of presbyopia-correcting intraocular lenses: effect of energy balance, addition, and adaptation.

Esteban-Ibanez E, Gambra E, Marrakchi Y, Sawides L, Dorronsoro C Biomed Opt Express. 2025; 16(2):849-871.

PMID: 39958868 PMC: 11828464. DOI: 10.1364/BOE.543908.


Visual Quality and Accommodation With Novel Optical Designs for Myopia Control.

Aissati S, Zou T, Goswami S, Zheleznyak L, Marcos S Transl Vis Sci Technol. 2024; 13(12):6.

PMID: 39630438 PMC: 11622158. DOI: 10.1167/tvst.13.12.6.


Visual simulation of intraocular lenses: from on-bench performance to computational and experimental validations.

Papadogiannis P, Gambra E, Labuz G, Yan W, Martin-Becerra D, Siso-Fuertes I Biomed Opt Express. 2024; 15(11):6521-6530.

PMID: 39553883 PMC: 11563315. DOI: 10.1364/BOE.538878.


Simulation of daily soft multifocal contact lenses using SimVis Gekko: from in-vitro and computational characterization to clinical validation.

Esteban-Ibanez E, Montagud-Martinez D, Sawides L, Zaytouny A, de Castro A, Siso-Fuertes I Sci Rep. 2024; 14(1):8592.

PMID: 38615153 PMC: 11016090. DOI: 10.1038/s41598-024-59178-1.


Spatiotemporal defocus sensitivity function of the human visual system.

Rodriguez-Lopez V, Geisler W, Dorronsoro C Biomed Opt Express. 2023; 14(7):3654-3670.

PMID: 37497500 PMC: 10368063. DOI: 10.1364/BOE.486242.


References
1.
Gatinel D, Houbrechts Y . Comparison of bifocal and trifocal diffractive and refractive intraocular lenses using an optical bench. J Cataract Refract Surg. 2013; 39(7):1093-9. DOI: 10.1016/j.jcrs.2013.01.048. View

2.
Vinas M, Dorronsoro C, Gonzalez V, Cortes D, Radhakrishnan A, Marcos S . Testing vision with angular and radial multifocal designs using Adaptive Optics. Vision Res. 2016; 132:85-96. DOI: 10.1016/j.visres.2016.04.011. View

3.
Bouchal Z, Chlup V, celechovsky R, Bouchal P, Nistor I . Achromatic correction of diffractive dispersion in white light SLM imaging. Opt Express. 2014; 22(10):12046-59. DOI: 10.1364/OE.22.012046. View

4.
Artal P, Chen L, Fernandez E, Singer B, Manzanera S, Williams D . Neural compensation for the eye's optical aberrations. J Vis. 2004; 4(4):281-7. DOI: 10.1167/4.4.4. View

5.
Tabernero J, Schwarz C, Fernandez E, Artal P . Binocular visual simulation of a corneal inlay to increase depth of focus. Invest Ophthalmol Vis Sci. 2011; 52(8):5273-7. DOI: 10.1167/iovs.10-6436. View