Digital Wavefront Sensing Using Swept Source OCT
Overview
Authors
Affiliations
Sub-aperture based digital adaptive optics is demonstrated in a fiber based point scanning optical coherence tomography system using a 1060 nm swept source laser. To detect optical aberrations , a small lateral field of view of ~[Formula: see text] is scanned on the sample at a high volume rate of 17 Hz (~1.3 kHz B-scan rate) to avoid any significant lateral and axial motion of the sample, and is used as a "guide star" for the sub-aperture based DAO. The proof of principle is demonstrated using a micro-beads phantom sample, wherein a significant root mean square wavefront error (RMS WFE) of 1.48 waves (> 1[Formula: see text]) is detected. aberration measurement with a RMS WFE of 0.33 waves, which is ~5 times higher than the Marechal's criterion of [Formula: see text] waves for the diffraction limited performance, is shown for a human retinal OCT. Attempt has been made to validate the experimental results with the conventional Shack-Hartmann wavefront sensor within reasonable limitations.
Multi-focus averaging for multiple scattering suppression in optical coherence tomography.
Zhu L, Makita S, Tamaoki J, Lichtenegger A, Lim Y, Zhu Y Biomed Opt Express. 2023; 14(9):4828-4844.
PMID: 37791259 PMC: 10545188. DOI: 10.1364/BOE.493706.
Han L, Bizheva K Biomed Opt Express. 2023; 14(7):3344-3361.
PMID: 37497512 PMC: 10368066. DOI: 10.1364/BOE.488881.
Digital ocular swept source optical coherence aberrometry.
Georgiev S, Kumar A, Findl O, Hirnschall N, Niederleithner M, Kendrisic M Biomed Opt Express. 2021; 12(11):6762-6779.
PMID: 34858679 PMC: 8606149. DOI: 10.1364/BOE.430596.
Enhanced medical diagnosis for dOCTors: a perspective of optical coherence tomography.
Leitgeb R, Placzek F, Rank E, Krainz L, Haindl R, Li Q J Biomed Opt. 2021; 26(10).
PMID: 34672145 PMC: 8528212. DOI: 10.1117/1.JBO.26.10.100601.
Liu S, Xia F, Yang X, Wu M, Bizimana L, Xu C Biomed Opt Express. 2021; 12(8):4934-4954.
PMID: 34513234 PMC: 8407825. DOI: 10.1364/BOE.427979.