» Articles » PMID: 28717573

Digital Wavefront Sensing Using Swept Source OCT

Overview
Specialty Radiology
Date 2017 Jul 19
PMID 28717573
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Sub-aperture based digital adaptive optics is demonstrated in a fiber based point scanning optical coherence tomography system using a 1060 nm swept source laser. To detect optical aberrations , a small lateral field of view of ~[Formula: see text] is scanned on the sample at a high volume rate of 17 Hz (~1.3 kHz B-scan rate) to avoid any significant lateral and axial motion of the sample, and is used as a "guide star" for the sub-aperture based DAO. The proof of principle is demonstrated using a micro-beads phantom sample, wherein a significant root mean square wavefront error (RMS WFE) of 1.48 waves (> 1[Formula: see text]) is detected. aberration measurement with a RMS WFE of 0.33 waves, which is ~5 times higher than the Marechal's criterion of [Formula: see text] waves for the diffraction limited performance, is shown for a human retinal OCT. Attempt has been made to validate the experimental results with the conventional Shack-Hartmann wavefront sensor within reasonable limitations.

Citing Articles

Multi-focus averaging for multiple scattering suppression in optical coherence tomography.

Zhu L, Makita S, Tamaoki J, Lichtenegger A, Lim Y, Zhu Y Biomed Opt Express. 2023; 14(9):4828-4844.

PMID: 37791259 PMC: 10545188. DOI: 10.1364/BOE.493706.


Correcting spatial-spectral crosstalk and chromatic aberrations in broadband line-scan spectral-domain OCT images.

Han L, Bizheva K Biomed Opt Express. 2023; 14(7):3344-3361.

PMID: 37497512 PMC: 10368066. DOI: 10.1364/BOE.488881.


Digital ocular swept source optical coherence aberrometry.

Georgiev S, Kumar A, Findl O, Hirnschall N, Niederleithner M, Kendrisic M Biomed Opt Express. 2021; 12(11):6762-6779.

PMID: 34858679 PMC: 8606149. DOI: 10.1364/BOE.430596.


Enhanced medical diagnosis for dOCTors: a perspective of optical coherence tomography.

Leitgeb R, Placzek F, Rank E, Krainz L, Haindl R, Li Q J Biomed Opt. 2021; 26(10).

PMID: 34672145 PMC: 8528212. DOI: 10.1117/1.JBO.26.10.100601.


Closed-loop wavefront sensing and correction in the mouse brain with computed optical coherence microscopy.

Liu S, Xia F, Yang X, Wu M, Bizimana L, Xu C Biomed Opt Express. 2021; 12(8):4934-4954.

PMID: 34513234 PMC: 8407825. DOI: 10.1364/BOE.427979.


References
1.
Si K, Gong W, Sheppard C . Three-dimensional coherent transfer function for a confocal microscope with two D-shaped pupils. Appl Opt. 2009; 48(5):810-7. DOI: 10.1364/ao.48.000810. View

2.
Kumar A, Drexler W, Leitgeb R . Numerical focusing methods for full field OCT: a comparison based on a common signal model. Opt Express. 2014; 22(13):16061-78. DOI: 10.1364/OE.22.016061. View

3.
Thurman S, Fienup J . Phase-error correction in digital holography. J Opt Soc Am A Opt Image Sci Vis. 2008; 25(4):983-94. DOI: 10.1364/josaa.25.000983. View

4.
Drexler W, Liu M, Kumar A, Kamali T, Unterhuber A, Leitgeb R . Optical coherence tomography today: speed, contrast, and multimodality. J Biomed Opt. 2014; 19(7):071412. DOI: 10.1117/1.JBO.19.7.071412. View

5.
Nankivil D, Dhalla A, Gahm N, Shia K, Farsiu S, Izatt J . Coherence revival multiplexed, buffered swept source optical coherence tomography: 400 kHz imaging with a 100 kHz source. Opt Lett. 2014; 39(13):3740-3. PMC: 4206083. DOI: 10.1364/OL.39.003740. View