» Articles » PMID: 24978725

Coherence Revival Multiplexed, Buffered Swept Source Optical Coherence Tomography: 400 KHz Imaging with a 100 KHz Source

Overview
Journal Opt Lett
Specialty Ophthalmology
Date 2014 Jul 1
PMID 24978725
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

The effective speed of a swept source optical coherence tomography (SSOCT) imaging system was quadrupled using efficient sweep buffering along with coherence revival and spatial multiplexing. A polarizing beam splitter and fold mirror assembly were used to create a dual spot sample arm with a common objective designed for near-diffraction-limited retinal imaging. Using coherence revival, a variable optical delay line allowed for separate locations within a sample to be simultaneously imaged and frequency encoded by carefully controlling the optical path length of each sample path. This method can be used to efficiently quadruple the imaging speed of any SSOCT system employing a low duty-cycle laser that exhibits coherence revival. The system was used to image the retina of healthy human volunteers.

Citing Articles

Polarization-multiplexed, dual-beam swept source optical coherence tomography angiography.

Yang J, Chandwani R, Zhao R, Wang Z, Jia Y, Huang D J Biophotonics. 2017; 11(3).

PMID: 29215796 PMC: 7189903. DOI: 10.1002/jbio.201700303.


Noninvasive structural and microvascular anatomy of oral mucosae using handheld optical coherence tomography.

Tsai M, Chen Y, Lee C, Huang B, Trung N, Lee Y Biomed Opt Express. 2017; 8(11):5001-5012.

PMID: 29188097 PMC: 5695947. DOI: 10.1364/BOE.8.005001.


Determination on the Coefficient of Thermal Expansion in High-Power InGaN-based Light-emitting Diodes by Optical Coherence Tomography.

Lee Y, Chou C, Huang C, Yao Y, Haung Y, Tsai M Sci Rep. 2017; 7(1):14390.

PMID: 29089538 PMC: 5663912. DOI: 10.1038/s41598-017-14689-y.


digital wavefront sensing using swept source OCT.

Kumar A, Wurster L, Salas M, Ginner L, Drexler W, Leitgeb R Biomed Opt Express. 2017; 8(7):3369-3382.

PMID: 28717573 PMC: 5508834. DOI: 10.1364/BOE.8.003369.


Optical coherence tomography of the preterm eye: from retinopathy of prematurity to brain development.

Rothman A, Mangalesh S, Chen X, Toth C Eye Brain. 2017; 8:123-133.

PMID: 28539807 PMC: 5398750. DOI: 10.2147/EB.S97660.


References
1.
Goncharov A, Dainty C . Wide-field schematic eye models with gradient-index lens. J Opt Soc Am A Opt Image Sci Vis. 2007; 24(8):2157-74. DOI: 10.1364/josaa.24.002157. View

2.
Leung M, Mariampillai A, Standish B, Lee K, Munce N, Vitkin I . High-power wavelength-swept laser in Littman telescope-less polygon filter and dual-amplifier configuration for multichannel optical coherence tomography. Opt Lett. 2009; 34(18):2814-6. DOI: 10.1364/OL.34.002814. View

3.
Chiu S, Li X, Nicholas P, Toth C, Izatt J, Farsiu S . Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt Express. 2010; 18(18):19413-28. PMC: 3408910. DOI: 10.1364/OE.18.019413. View

4.
Dhalla A, Shia K, Izatt J . Efficient sweep buffering in swept source optical coherence tomography using a fast optical switch. Biomed Opt Express. 2012; 3(12):3054-66. PMC: 3521311. DOI: 10.1364/BOE.3.003054. View

5.
Dhalla A, Nankivil D, Izatt J . Complex conjugate resolved heterodyne swept source optical coherence tomography using coherence revival. Biomed Opt Express. 2012; 3(3):633-49. PMC: 3296548. DOI: 10.1364/BOE.3.000633. View