» Articles » PMID: 28696304

Bioinspired Supramolecular Fibers Drawn from a Multiphase Self-assembled Hydrogel

Overview
Specialty Science
Date 2017 Jul 12
PMID 28696304
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Inspired by biological systems, we report a supramolecular polymer-colloidal hydrogel (SPCH) composed of 98 wt % water that can be readily drawn into uniform ([Formula: see text]6-[Formula: see text]m thick) "supramolecular fibers" at room temperature. Functionalized polymer-grafted silica nanoparticles, a semicrystalline hydroxyethyl cellulose derivative, and cucurbit[8]uril undergo aqueous self-assembly at multiple length scales to form the SPCH facilitated by host-guest interactions at the molecular level and nanofibril formation at colloidal-length scale. The fibers exhibit a unique combination of stiffness and high damping capacity (60-70%), the latter exceeding that of even biological silks and cellulose-based viscose rayon. The remarkable damping performance of the hierarchically structured fibers is proposed to arise from the complex combination and interactions of "hard" and "soft" phases within the SPCH and its constituents. SPCH represents a class of hybrid supramolecular composites, opening a window into fiber technology through low-energy manufacturing.

Citing Articles

Water-regulated viscosity-plasticity phase transitions in a peptide self-assembled muscle-like hydrogel.

Fang Y, Shi J, Liang J, Ma D, Wang H Nat Commun. 2025; 16(1):1058.

PMID: 39865087 PMC: 11770121. DOI: 10.1038/s41467-025-56415-7.


Progress in Multiscale Modeling of Silk Materials.

Brough H, Cheneler D, Hardy J Biomacromolecules. 2024; 25(11):6987-7014.

PMID: 39438248 PMC: 11558682. DOI: 10.1021/acs.biomac.4c01122.


Establishing superfine nanofibrils for robust polyelectrolyte artificial spider silk and powerful artificial muscles.

He W, Wang M, Mei G, Liu S, Qadeer Khan A, Li C Nat Commun. 2024; 15(1):3485.

PMID: 38664427 PMC: 11045855. DOI: 10.1038/s41467-024-47796-2.


Bioinspired Mechanically Robust and Recyclable Hydrogel Microfibers Based on Hydrogen-Bond Nanoclusters.

Liang J, Xu J, Zheng J, Zhou L, Yang W, Liu E Adv Sci (Weinh). 2024; 11(23):e2401278.

PMID: 38622885 PMC: 11186113. DOI: 10.1002/advs.202401278.


Self-encapsulated ionic fibers based on stress-induced adaptive phase transition for non-contact depth-of-field camouflage sensing.

Liu Y, Wang C, Liu Z, Qu X, Gai Y, Xue J Nat Commun. 2024; 15(1):663.

PMID: 38253700 PMC: 10803323. DOI: 10.1038/s41467-024-44848-5.


References
1.
Appel E, Loh X, Jones S, Dreiss C, Scherman O . Sustained release of proteins from high water content supramolecular polymer hydrogels. Biomaterials. 2012; 33(18):4646-52. DOI: 10.1016/j.biomaterials.2012.02.030. View

2.
Rising A, Johansson J . Toward spinning artificial spider silk. Nat Chem Biol. 2015; 11(5):309-15. DOI: 10.1038/nchembio.1789. View

3.
Nelson R, Sawaya M, Balbirnie M, Madsen A, Riekel C, Grothe R . Structure of the cross-beta spine of amyloid-like fibrils. Nature. 2005; 435(7043):773-8. PMC: 1479801. DOI: 10.1038/nature03680. View

4.
Vollrath F, Knight D . Liquid crystalline spinning of spider silk. Nature. 2001; 410(6828):541-8. DOI: 10.1038/35069000. View

5.
De Tommasi D, Puglisi G, Saccomandi G . Damage, self-healing, and hysteresis in spider silks. Biophys J. 2010; 98(9):1941-8. PMC: 2862193. DOI: 10.1016/j.bpj.2010.01.021. View