» Articles » PMID: 28665934

Active Vertex Model for Cell-resolution Description of Epithelial Tissue Mechanics

Overview
Specialty Biology
Date 2017 Jul 1
PMID 28665934
Citations 56
Authors
Affiliations
Soon will be listed here.
Abstract

We introduce an Active Vertex Model (AVM) for cell-resolution studies of the mechanics of confluent epithelial tissues consisting of tens of thousands of cells, with a level of detail inaccessible to similar methods. The AVM combines the Vertex Model for confluent epithelial tissues with active matter dynamics. This introduces a natural description of the cell motion and accounts for motion patterns observed on multiple scales. Furthermore, cell contacts are generated dynamically from positions of cell centres. This not only enables efficient numerical implementation, but provides a natural description of the T1 transition events responsible for local tissue rearrangements. The AVM also includes cell alignment, cell-specific mechanical properties, cell growth, division and apoptosis. In addition, the AVM introduces a flexible, dynamically changing boundary of the epithelial sheet allowing for studies of phenomena such as the fingering instability or wound healing. We illustrate these capabilities with a number of case studies.

Citing Articles

Cell-Level Modelling of Homeostasis in Confined Epithelial Monolayers.

Chaithanya K, Rozman J, Kosmrlj A, Sknepnek R J Elast. 2025; 157(2):29.

PMID: 40013236 PMC: 11850549. DOI: 10.1007/s10659-025-10120-0.


Inferring active and passive mechanical drivers of epithelial convergent extension.

Anjum S, Vijayraghavan D, Fernandez-Gonzalez R, Sutherland A, Davidson L bioRxiv. 2025; .

PMID: 39975291 PMC: 11838355. DOI: 10.1101/2025.01.28.635314.


Deciphering the interplay between biology and physics with a finite element method-implemented vertex organoid model: A tool for the mechanical analysis of cell behavior on a spherical organoid shell.

Laussu J, Michel D, Magne L, Segonds S, Marguet S, Hamel D PLoS Comput Biol. 2025; 21(1):e1012681.

PMID: 39792958 PMC: 11771887. DOI: 10.1371/journal.pcbi.1012681.


Vertex model with internal dissipation enables sustained flows.

Rozman J, Chaithanya K, Yeomans J, Sknepnek R Nat Commun. 2025; 16(1):530.

PMID: 39789022 PMC: 11718050. DOI: 10.1038/s41467-025-55820-2.


Initiation of epithelial wound closure by an active instability at the purse string.

Movrin V, Krajnc M Biophys J. 2024; 124(1):107-114.

PMID: 39543877 PMC: 11739890. DOI: 10.1016/j.bpj.2024.11.008.


References
1.
Perrone M, Veldhuis J, Brodland G . Non-straight cell edges are important to invasion and engulfment as demonstrated by cell mechanics model. Biomech Model Mechanobiol. 2015; 15(2):405-18. PMC: 4792343. DOI: 10.1007/s10237-015-0697-6. View

2.
Meineke F, Potten C, Loeffler M . Cell migration and organization in the intestinal crypt using a lattice-free model. Cell Prolif. 2001; 34(4):253-66. PMC: 6495866. DOI: 10.1046/j.0960-7722.2001.00216.x. View

3.
Guillot C, Lecuit T . Mechanics of epithelial tissue homeostasis and morphogenesis. Science. 2013; 340(6137):1185-9. DOI: 10.1126/science.1235249. View

4.
Ilina O, Friedl P . Mechanisms of collective cell migration at a glance. J Cell Sci. 2009; 122(Pt 18):3203-8. DOI: 10.1242/jcs.036525. View

5.
Sanchez-Gutierrez D, Tozluoglu M, Barry J, Pascual A, Mao Y, Escudero L . Fundamental physical cellular constraints drive self-organization of tissues. EMBO J. 2015; 35(1):77-88. PMC: 4718000. DOI: 10.15252/embj.201592374. View