» Articles » PMID: 28611361

Discovery of a Novel Conformational Equilibrium in Urokinase-type Plasminogen Activator

Overview
Journal Sci Rep
Specialty Science
Date 2017 Jun 15
PMID 28611361
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Although trypsin-like serine proteases have flexible surface-exposed loops and are known to adopt higher and lower activity conformations, structural determinants for the different conformations have remained largely obscure. The trypsin-like serine protease, urokinase-type plasminogen activator (uPA), is central in tissue remodeling processes and also strongly implicated in tumor metastasis. We solved five X-ray crystal structures of murine uPA (muPA) in the absence and presence of allosteric molecules and/or substrate-like molecules. The structure of unbound muPA revealed an unsuspected non-chymotrypsin-like protease conformation in which two β-strands in the core of the protease domain undergoes a major antiparallel-to-parallel conformational transition. We next isolated two anti-muPA nanobodies; an active-site binding nanobody and an allosteric nanobody. Crystal structures of the muPA:nanobody complexes and hydrogen-deuterium exchange mass spectrometry revealed molecular insights about molecular factors controlling the antiparallel-to-parallel equilibrium in muPA. Together with muPA activity assays, the data provide valuable insights into regulatory mechanisms and conformational flexibility of uPA and trypsin-like serine proteases in general.

Citing Articles

The Light Chain Allosterically Enhances the Protease Activity of Murine Urokinase-Type Plasminogen Activator.

Torres-Paris C, Song H, Engelberger F, Ramirez-Sarmiento C, Komives E Biochemistry. 2024; 63(11):1434-1444.

PMID: 38780522 PMC: 11154964. DOI: 10.1021/acs.biochem.4c00071.


Allosteric inhibition of HTRA1 activity by a conformational lock mechanism to treat age-related macular degeneration.

Gerhardy S, Ultsch M, Tang W, Green E, Holden J, Li W Nat Commun. 2022; 13(1):5222.

PMID: 36064790 PMC: 9445180. DOI: 10.1038/s41467-022-32760-9.


Structural study of the uPA-nafamostat complex reveals a covalent inhibitory mechanism of nafamostat.

Zhou Y, Wu J, Xue G, Li J, Jiang L, Huang M Biophys J. 2022; 121(20):3940-3949.

PMID: 36039386 PMC: 9674978. DOI: 10.1016/j.bpj.2022.08.034.


Antibody recognition of complement factor H reveals a flexible loop involved in atypical hemolytic uremic syndrome pathogenesis.

Yokoo T, Tanabe A, Yoshida Y, Caaveiro J, Nakakido M, Ikeda Y J Biol Chem. 2022; 298(6):101962.

PMID: 35452676 PMC: 9127587. DOI: 10.1016/j.jbc.2022.101962.


Structure-mechanics statistical learning uncovers mechanical relay in proteins.

Raj N, Click T, Yang H, Chu J Chem Sci. 2022; 13(13):3688-3696.

PMID: 35432911 PMC: 8966636. DOI: 10.1039/d1sc06184d.


References
1.
Andreasen P, Egelund R, Petersen H . The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci. 2000; 57(1):25-40. PMC: 11146824. DOI: 10.1007/s000180050497. View

2.
Sabharwal A, Birktoft J, Gorka J, Wildgoose P, Petersen L, Bajaj S . High affinity Ca(2+)-binding site in the serine protease domain of human factor VIIa and its role in tissue factor binding and development of catalytic activity. J Biol Chem. 1995; 270(26):15523-30. DOI: 10.1074/jbc.270.26.15523. View

3.
Schechter I, Berger A . On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967; 27(2):157-62. DOI: 10.1016/s0006-291x(67)80055-x. View

4.
Emsley P, Lohkamp B, Scott W, Cowtan K . Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010; 66(Pt 4):486-501. PMC: 2852313. DOI: 10.1107/S0907444910007493. View

5.
Huntington J . Thrombin plasticity. Biochim Biophys Acta. 2011; 1824(1):246-52. DOI: 10.1016/j.bbapap.2011.07.005. View